Methods for approximating hessian times vector operation in full wavefield inversion
    1.
    发明授权
    Methods for approximating hessian times vector operation in full wavefield inversion 有权
    在全波场反演中近似粗糙时间向量运算的方法

    公开(公告)号:US09176930B2

    公开(公告)日:2015-11-03

    申请号:US13655171

    申请日:2012-10-18

    IPC分类号: G01V1/28 G06F17/16

    摘要: Method for estimating the Hessian of the objective function, times a vector, in order to compute an update in an iterative optimization solution to a partial differential equation such as the wave equation, used for example in full wave field inversion of seismic data. The Hessian times vector operation is approximated as one forward wave propagation (24) and one gradient computation (25) in a modified subsurface model (23). The modified subsurface model may be a linear combination of the current subsurface model (20) and the vector (21) to be multiplied by the Hessian matrix. The forward-modeled data from the modified model are treated as a field measurement in the data residual of the objective function for the gradient computation in the modified model. In model parameter estimation by iterative inversion of geophysical data, the vector in the first iteration may be the gradient of the objective function.

    摘要翻译: 用于估计目标函数的Hessian乘以向量的方法,以便计算迭代优化方案中的一个偏微分方程的更新,例如用于例如在地震数据的全波场反演中的波动方程。 在修改后的地下模型(23)中,Hessian时间向量运算近似为一个正向波传播(24)和一个梯度计算(25)。 修改的地下模型可以是当前地下模型(20)和矢量(21)的线性组合,以乘以Hessian矩阵。 修正模型的前向建模数据被视为修正模型中梯度计算的目标函数的数据残差中的场测量。 在通过地球物理数据迭代反演的模型参数估计中,第一次迭代中的向量可能是目标函数的梯度。

    Methods For Subsurface Parameter Estimation In Full Wavefield Inversion And Reverse-Time Migration
    2.
    发明申请
    Methods For Subsurface Parameter Estimation In Full Wavefield Inversion And Reverse-Time Migration 有权
    全波场反演和反向时间迁移的地下参数估计方法

    公开(公告)号:US20110194379A1

    公开(公告)日:2011-08-11

    申请号:US12984412

    申请日:2011-01-04

    IPC分类号: G01V1/28

    摘要: Method for converting seismic data to obtain a subsurface model of, for example, bulk modulus or density. The gradient of an objective function is computed (103) using the seismic data (101) and a background subsurface medium model (102). The source and receiver illuminations are computed in the background model (104). The seismic resolution volume is computed using the velocities of the background model (105). The gradient is converted into the difference subsurface model parameters (106) using the source and receiver illumination, seismic resolution volume, and the background subsurface model. These same factors may be used to compensate seismic data migrated by reverse time migration, which can then be related to a subsurface bulk modulus model. For iterative inversion, the difference subsurface model parameters (106) are used as preconditioned gradients (107).

    摘要翻译: 用于转换地震数据以获得例如体积模量或密度的地下模型的方法。 使用地震数据(101)和背景地下介质模型(102)计算目标函数的梯度(103)。 源和接收器照明在背景模型(104)中计算。 使用背景模型(105)的速度计算地震解析度。 使用源和接收器照明,地震分辨率体积和背景地下模型将梯度转换为差分地下模型参数(106)。 这些相同的因素可以用于补偿通过反向时间迁移迁移的地震数据,其然后可以与地下体积模量模型相关。 对于迭代反演,差分地下模型参数(106)用作预处理梯度(107)。

    Methods for subsurface parameter estimation in full wavefield inversion and reverse-time migration
    3.
    发明授权
    Methods for subsurface parameter estimation in full wavefield inversion and reverse-time migration 有权
    全波场反演和反向时间迁移的地下参数估计方法

    公开(公告)号:US08537638B2

    公开(公告)日:2013-09-17

    申请号:US12984412

    申请日:2011-01-04

    IPC分类号: G01V1/00 G01V1/28

    摘要: Method for converting seismic data to obtain a subsurface model of, for example, bulk modulus or density. The gradient of an objective function is computed (103) using the seismic data (101) and a background subsurface medium model (102). The source and receiver illuminations are computed in the background model (104). The seismic resolution volume is computed using the velocities of the background model (105). The gradient is converted into the difference subsurface model parameters (106) using the source and receiver illumination, seismic resolution volume, and the background subsurface model. These same factors may be used to compensate seismic data migrated by reverse time migration, which can then be related to a subsurface bulk modulus model. For iterative inversion, the difference subsurface model parameters (106) are used as preconditioned gradients (107).

    摘要翻译: 用于转换地震数据以获得例如体积模量或密度的地下模型的方法。 使用地震数据(101)和背景地下介质模型(102)计算目标函数的梯度(103)。 源和接收器照明在背景模型(104)中计算。 使用背景模型(105)的速度计算地震解析度。 使用源和接收器照明,地震分辨率体积和背景地下模型将梯度转换为差分地下模型参数(106)。 这些相同的因素可以用于补偿通过反向时间迁移迁移的地震数据,其然后可以与地下体积模量模型相关。 对于迭代反演,差分地下模型参数(106)用作预处理梯度(107)。

    Tomographically Enhanced Full Wavefield Inversion
    4.
    发明申请
    Tomographically Enhanced Full Wavefield Inversion 审中-公开
    断层增强全波场反演

    公开(公告)号:US20130311149A1

    公开(公告)日:2013-11-21

    申请号:US13849270

    申请日:2013-03-22

    IPC分类号: G06F17/50

    CPC分类号: G06F17/50 G01V1/282 G01V1/364

    摘要: Method for improving convergence in gradient-based iterative inversion of seismic data (101), especially advantageous for full wavefield inversion. The method comprises decomposing the gradient into two (or more) components (103), typically the migration component and the tomographic component, then weighting the components to compensate for unequal frequency content in the data (104), then recombining the weighted components (105), and using the recombined gradient to update (106) the physical properties model (102).

    摘要翻译: 改进地震数据梯度迭代反演收敛的方法(101),特别适用于全波场反演。 该方法包括将梯度分解为两个(或多个)分量(103),通常是迁移分量和断层分量,然后对分量进行加权以补偿数据(104)中的不等频率内容,然后将加权分量(105 ),并使用重组梯度更新(106)物理性质模型(102)。

    Methods for Approximating Hessian Times Vector Operation in Full Wavefield Inversion
    5.
    发明申请
    Methods for Approximating Hessian Times Vector Operation in Full Wavefield Inversion 审中-公开
    在全波场反演中近似Hessian Times矢量运算的方法

    公开(公告)号:US20130138408A1

    公开(公告)日:2013-05-30

    申请号:US13655171

    申请日:2012-10-18

    IPC分类号: G06F17/10

    摘要: Method for estimating the Hessian of the objective function, times a vector, in order to compute an update in an iterative optimization solution to a partial differential equation such as the wave equation, used for example in full wave field inversion of seismic data. The Hessian times vector operation is approximated as one forward wave propagation (24) and one gradient computation (25) in a modified subsurface model (23). The modified subsurface model may be a linear combination of the current subsurface model (20) and the vector (21) to be multiplied by the Hessian matrix. The forward-modeled data from the modified model are treated as a field measurement in the data residual of the objective function for the gradient computation in the modified model. In model parameter estimation by iterative inversion of geophysical data, the vector in the first iteration may be the gradient of the objective function.

    摘要翻译: 用于估计目标函数的Hessian乘以向量的方法,以便计算迭代优化方案中的一个偏微分方程的更新,例如用于例如在地震数据的全波场反演中的波动方程。 在修改后的地下模型(23)中,Hessian时间向量运算近似为一个正向波传播(24)和一个梯度计算(25)。 修改的地下模型可以是当前地下模型(20)和矢量(21)的线性组合,以乘以Hessian矩阵。 修正模型的前向建模数据被视为修正模型中梯度计算的目标函数的数据残差中的场测量。 在通过地球物理数据迭代反演的模型参数估计中,第一次迭代中的向量可能是目标函数的梯度。

    Method for Temporal Dispersion Correction for Seismic Simulation, RTM and FWI
    8.
    发明申请
    Method for Temporal Dispersion Correction for Seismic Simulation, RTM and FWI 审中-公开
    用于地震模拟,RTM和FWI的时间色散校正方法

    公开(公告)号:US20150355356A1

    公开(公告)日:2015-12-10

    申请号:US14670085

    申请日:2015-03-26

    IPC分类号: G01V1/32 G01V1/48 G01V1/36

    摘要: Method for correcting seismic simulations, RTM, and FWI for temporal dispersion due to temporal finite difference methods in which time derivatives are approximated to a specified order of approximation. Computer-simulated seismic data (51) are transformed from time domain to frequency domain (52), and then resampled using a mapping relationship that maps, in the frequency domain, to a frequency at which the time derivative exhibits no temporal dispersion (53), or to a frequency at which the time derivative exhibits a specified different order of temporal dispersion. Alternatively, measured seismic data from a field survey (61) may have temporal dispersion of a given order introduced, by a similar technique, to match the order of approximation used to generate simulated data which are to be compared to the measured data.

    摘要翻译: 用于由时间有限差分法校正地震模拟,RTM和FWI用于时间色散的方法,其中时间导数近似为指定的近似次数。 计算机模拟地震数据(51)从时域(52)变换到频域(52),然后使用在频域中映射到时间导数不显示时间色散的频率的映射关系重新采样(53) 或时间导数呈现指定的不同时间色散顺序的频率。 或者,来自现场勘测(61)的测量的地震数据可以通过类似的技术具有引入的给定次序的时间色散,以与用于生成将与测量数据进行比较的模拟数据的近似的顺序相匹配。

    Method for analyzing multiple geophysical data sets
    9.
    发明授权
    Method for analyzing multiple geophysical data sets 有权
    分析多个地球物理数据集的方法

    公开(公告)号:US08352190B2

    公开(公告)日:2013-01-08

    申请号:US12684607

    申请日:2010-01-08

    IPC分类号: G01V3/12

    CPC分类号: G01V11/00 G01V1/28

    摘要: An exemplary embodiment of the present invention provides a method for interpolating seismic data. The method includes collecting seismic data of two or more types over a field (401), determining an approximation to one of the types of the seismic data (402), and performing a wave-field transformation on the approximation to form a transformed approximation (405), wherein the transformed approximation corresponds to another of the collected types of seismic data. The method may also include setting the transformed approximation to match the measured seismic data of the corresponding types at matching locations (408), performing a wave-field transformation on the transformed approximation to form an output approximation (412), and using the output approximation to obtain a data representation of a geological layer (416).

    摘要翻译: 本发明的示例性实施例提供了一种用于内插地震数据的方法。 该方法包括:通过场(401)收集两种或多种类型的地震数据,确定近似于地震数据类型之一(402),以及对近似进行波场变换以形成变换近似( 405),其中变换的近似对应于所收集的地震数据的另一种。 该方法还可以包括设置变换后的近似以匹配匹配位置处的相应类型的测量的地震数据(408),对经变换的近似执行波场变换以形成输出近似(412),并且使用输出近似 以获得地质层的数据表示(416)。

    Convergence rate of full wavefield inversion using spectral shaping
    10.
    发明授权
    Convergence rate of full wavefield inversion using spectral shaping 有权
    使用频谱整形的全波场反演的收敛率

    公开(公告)号:US09081115B2

    公开(公告)日:2015-07-14

    申请号:US14492798

    申请日:2014-09-22

    IPC分类号: G06G7/48 G01V1/28

    摘要: Method for speeding up iterative inversion of seismic data (106) to obtain a subsurface model (102), using local cost function optimization. The frequency spectrum of the updated model at each iteration is controlled to match a known or estimated frequency spectrum for the subsurface region, preferably the average amplitude spectrum of the subsurface P-impedance. The controlling is done either by applying a spectral-shaping filter to the source wavelet (303) and to the data (302) or by applying the filter, which may vary with time, to the gradient of the cost function (403). The source wavelet's amplitude spectrum (before filtering) should satisfy D(f)=fIp(f)W(f), where f is frequency, D(f) is the average amplitude spectrum of the seismic data, and Ip(f) is the average amplitude spectrum for P-impedance in the subsurface region (306,402) or an approximation thereof.

    摘要翻译: 使用局部成本函数优化加速地震数据迭代反演(106)以获得地下模型(102)的方法。 控制每个迭代中更新模型的频谱,以匹配地下区域的已知或估计频谱,最好是地下P-阻抗的平均幅度谱。 控制是通过对源小波(303)和数据(302)应用频谱整形滤波器或通过将可随时间变化的滤波器应用于成本函数(403)的梯度来完成的。 源小波振幅谱(滤波前)应满足D(f)= fIp(f)W(f),其中f为频率,D(f)为地震数据的平均振幅谱,Ip(f)为 地下区域中的P阻抗的平均幅度谱(306,402)或其近似值。