摘要:
A fuel cell system comprising the stack having a gas distribution means of guiding reaction gas into electrodes of respective single cells, the gas supplying sections for supplying the reaction gas to the stack, the gas humidifying section for humidifying the reaction gas which are disposed between the gas supplying sections and the electrode inlet of the gas distribution means, and the controlling section for controlling the water vapor content of the reaction gas supplied at least to one of the electrodes so as to exceed the saturated water vapor content at the temperature of at least one of the electrode inlets of the gas distribution means.
摘要:
The polymer electrolyte fuel cell of the present invention is equipped with a cell having an MEA having a hydrogen ion-conducting polymer electrolyte membrane and an anode and a cathode sandwiching the polymer electrolyte membrane; a platelike anode-side separator positioned on one side of the MEA so that the front surface thereof contacts the anode, with fuel gas passages through which fuel gas flows being formed in the front surface; and a platelike cathode-side separator positioned on the other side of the MEA so that the front surface thereof contacts the cathode, with oxidizing gas passages through which oxidizing gas flows being formed in the front surface; a cell stack in which a plurality of said cells is stacked; and a cooling water flow passage, through which cooling water flows, formed on at least the rear surface of one from among the anode-side separator and the cathode-side separator of at least a prescribed cell in said cell stack; where said fuel gas, oxidizing gas, and cooling water flow through said fuel gas passage, oxidizing gas passage, and cooling water passage, respectively, in a manner not running counter to gravity.
摘要:
The polymer electrolyte fuel cell of the present invention is equipped with a cell having an MEA having a hydrogen ion-conducting polymer electrolyte membrane and an anode and a cathode sandwiching the polymer electrolyte membrane; a platelike anode-side separator positioned on one side of the MEA so that the front surface thereof contacts the anode, with fuel gas passages through which fuel gas flows being formed in the front surface; and a platelike cathode-side separator positioned on the other side of the MEA so that the front surface thereof contacts the cathode, with oxidizing gas passages through which oxidizing gas flows being formed in the front surface; a cell stack in which a plurality of said cells is stacked; and a cooling water flow passage, through which cooling water flows, formed on at least the rear surface of one from among the anode-side separator and the cathode-side separator of at least a prescribed cell in said cell stack; where said fuel gas, oxidizing gas, and cooling water flow through said fuel gas passage, oxidizing gas passage, and cooling water passage, respectively, in a manner not running counter to gravity.
摘要:
A highly reliable polymer electrolyte fuel cell includes an anode-side separator plate and a cathode-side separator plate that are provided with an anode-side sealing member and a cathode-side sealing member, respectively. The anode-side and cathode-side sealing members seal the cell in cooperation with a polymer electrolyte membrane at sealing parts where the anode-side and cathode-side sealing members are opposed to each other, thereby preventing gas from leaking out of gas flow channels. One of the anode-side and cathode-side sealing members has a pointed rib that comes in contact with the sealing parts in a linear manner, and the other sealing member comes in contact with the sealing parts surface to surface.
摘要:
The polymer electrolyte fuel cell of the present invention is equipped with a cell having an MEA having a hydrogen ion-conducting polymer electrolyte membrane and an anode and a cathode sandwiching the polymer electrolyte membrane; a platelike anode-side separator positioned on one side of the MEA so that the front surface thereof contacts the anode, with fuel gas passages through which fuel gas flows being formed in the front surface; and a platelike cathode-side separator positioned on the other side of the MEA so that the front surface thereof contacts the cathode, with oxidizing gas passages through which oxidizing gas flows being formed in the front surface; a cell stack in which a plurality of said cells is stacked; and a cooling water flow passage, through which cooling water flows, formed on at least the rear surface of one from among the anode-side separator and the cathode-side separator of at least a prescribed cell in said cell stack; where said fuel gas, oxidizing gas, and cooling water flow through said fuel gas passage, oxidizing gas passage, and cooling water passage, respectively, in a manner not running counter to gravity.
摘要:
A polymer electrolyte fuel cell is provided with a conductive separator having one or more gas flow channels for supplying and exhausting a gas to and from an electrode of the fuel cell. The gas flow channels are connected to and in fluid communication with an inlet manifold on the separator. The cell also includes a gas supply connection in fluid communication with the inlet manifold of the separator. Water accumulation in the cell can be advantageously reduced by configuring the connections to the inlet manifold so that the lowermost part of any gas flow channel connections with the inlet manifold is above the uppermost part of the gas supply connection to the inlet manifold.
摘要:
In an electrode-membrane-frame assembly production method, a principal part is formed by an electrolyte membrane, first and second catalyst layers and first and second gas diffusion layers, with the first and second gas diffusion layers arranged with their outer circumferences at different positions. The principal part is arranged in a molding die with a circumferential region of the principal part disposed on a flat region of a primary molded body. A circumferential portion of one of the gas diffusion layers is arranged to oppose a flat region of the primary molded body so that the membrane is interposed between the circumferential portion and the flat region. Subsequently, a secondary molded body is formed to integrate with the primary molded body and the principal part.
摘要:
A fuel cell separator having a turn portion of a serpentine-shaped reaction gas passage region. In the turn portion, a recessed portion is defined by an outer end of the turn portion and oblique boundaries between the recessed portion and a pair of passage groove group. In the turn portion, a plurality of protrusions, which vertically extend from a bottom face of the recessed portion and are arranged in an island form, are disposed such that one or more protrusions form a plurality of columns lined up and spaced apart from each other with a gap in a direction in which the outer end extends and one or more protrusions form a plurality of rows lined up and spaced apart from each other with a gap in a direction perpendicular to the direction in which the outer end extends.
摘要:
A polymer electrolyte fuel cell is provided with a fuel cell stack assembled by sandwiching a plurality of stacked single cell modules with a plurality of fastening members through a pair of end plates. The fuel cell includes a first elastic member arranged between the fastening member and the end plate and a plurality of second elastic members arranged between the end plate and the end of the fuel cell stack. Each of the second elastic members is arranged on the surface of the end plate corresponding to the electrode portion of a membrane electrode assembly in each of the single cell module, and each of the first elastic members is arranged on the surface of the end plate corresponding to a seal member arrangement region in which the seal member is arranged between the periphery of the membrane electrode assembly and a pair of separator plates in each single cell module.
摘要:
In a solid polyelectrolyte fuel cell, with a frame including a frame body main part placed along a peripheral edge portion of a membrane, a plurality of first retaining portions which are arrayed so as to protrude from an inner edge of the frame body main part and which retain the front surface side of the membrane, and a plurality of second retaining portions which are arrayed so as to protrude from the inner edge of the frame body main part and which retain the back surface side of the membrane, the first retaining portions and the second retaining portions are so arrayed that retaining positions of the membrane by the first retaining portions and retaining positions of the membrane by the second retaining portions are alternately placed. A plurality of front-surface side elastic members are placed on the front surface of the membrane between neighboring ones of the first retaining portions while a plurality of back-surface side elastic members are placed on the back surface of the membrane between neighboring ones of the second retaining portions.