Abstract:
A preservation assembly of a PEFC stack which is capable of sufficiently inhibiting degradation of performance of the PEFC stack particularly during a time period that elapses from when the stack is placed in the uninstalled state until it is placed in the installation position and is practically used. The PEFC stack is provided with an oxidizing agent passage having an inlet and an outlet and extending through a cathode and a reducing agent passage having an inlet and an outlet and extending through an anode. The PEFC stack is preserved in an uninstalled state in such a manner that an interior of the oxidizing agent passage and an interior of the reducing agent passage are set in a pressure-reduced state.
Abstract:
A photoelectrochemical cell (1) includes: an optical semiconductor electrode (first electrode) (3) including a conductive substrate (3a) and an n-type semiconductor layer (3b) as an optical semiconductor layer disposed on the conductive substrate (3a); a counter electrode (second electrode) (4) disposed to face the surface of the optical semiconductor electrode (3) on the conductive substrate (3a) side and connected electrically to the conductive substrate (3a); an electrolyte solution (11) containing water and disposed in contact with the surface of the n-type semiconductor layer (3b) and the surface of the counter electrode (4); a container (2) in which the optical semiconductor electrode (3), the counter electrode (4), and the electrolyte solution (11) are disposed; an inlet (5) for supplying water into the container; and an ion passing portion (12) that allows ions to move between the electrolyte solution in a region A on the surface side of the n-type semiconductor layer (3b) and the electrolyte solution in a region B on the opposite side of the region A with respect to the optical semiconductor electrode (3).
Abstract:
Provided is a method of preserving a PEFC stack, which is capable of controlling degradation of performance of the PEFC stack during a time period that elapses from when the stack is placed in an uninstalled state until it is placed in an installation position and is practically used. Provided is a preservation assembly of the PEFC stack which is capable of sufficiently inhibiting degradation of performance of the PEFC stack particularly during a time period that elapses from when the stack is placed in the uninstalled state until it is placed in the installation position and is practically used. A method of preserving a PEFC stack that is provided with an oxidizing agent passage (30) having an inlet and an outlet and extending through a cathode and a reducing agent passage (40) having an inlet and an outlet and extending through an anode, comprising preserving the PEFC (200) stack in an uninstalled state in such a manner that an interior of the oxidizing agent passage (30) and an interior of the reducing agent passage (40) are set in a pressure-reduced state.
Abstract:
Methods are provided for easily obtaining a high performance electrode without using an organic solvent for making an ink of an electrode catalyst or a surfactant for making an ink of a water repellent carbon material. The methods of manufacturing an electrode for a polymer electrolyte fuel cell comprise (a) a step of adhering a polymer electrolyte or a water repellent material to fine electrically conductive particles, and granulating the electrically conductive particles to obtain multinary granules, and (b) a step of depositing the multinary granules in layer form to obtain a catalyst layer or a water repellent layer of an electrode. Apparatus for manufacturing the electrodes, as well as polymer electrolyte fuel cells using the electrodes are also provided.
Abstract:
A polymer electrolyte fuel cell of the present invention includes conductive separator plates comprising molded plates of a composition comprising a binder, conductive carbon particles whose average particle diameter is not less than 50 μm and not more than ⅓ of the thickness of the thinnest portion of the conductive separator plate, and at least one of conductive carbon fine particles and micro-diameter carbon fibers. The separator plates do not require conventional cutting processes for gas flow channels, etc., and can be easily mass produced by injection molding and achieve a reduction in the cost.
Abstract:
Even if reaction gas flows into a substantially rectangular anode-side and cathode-side gaps formed between an annular main body portion and a membrane electrode assembly in an anode side and a cathode side of a fuel cell, the reaction gas is prevented from flowing out from an outlet without passing through an electrode to cause degradation of power generation efficiency. At least one of anode-side gasket and cathode-side gasket in the fuel cell is provided with an extra sealing portion connected to an annular main body portion in such a manner that, among two pairs of gap portions opposing to each other in the anode-side gap and the cathode-side gap, the extra sealing portion intersects with one pair of gap portions having a larger pressure gradient of fuel gas and oxidant gas in a direction from an upstream side to a downstream side of a fuel gas flow channel and an oxidant gas flow channel.
Abstract:
Provided is a method of preserving a PEFC stack, which is capable of controlling degradation of performance of the PEFC stack during a time period that elapses from when the stack is placed in an uninstalled state until it is placed in an installation position and is practically used. Provided is a preservation assembly of the PEFC stack which is capable of sufficiently inhibiting degradation of performance of the PEFC stack particularly during a time period that elapses from when the stack is placed in the uninstalled state until it is placed in the installation position and is practically used. A method of preserving a PEFC stack that is provided with an oxidizing agent passage (30) having an inlet and an outlet and extending through a cathode and a reducing agent passage (40) having an inlet and an outlet and extending through an anode, comprising preserving the PEFC (200) stack in an uninstalled state in such a manner that an interior of the oxidizing agent passage (30) and an interior of the reducing agent passage (40) are set in a pressure-reduced state.
Abstract:
There is provided a polymer electrolyte fuel cell capable of: sufficiently suppressing the progress of drying of the polymer electrolyte in the catalyst layers and of the polymer electrolyte membrane, and in addition, the occurrence of flooding, even if the moistened conditions of the fuel gas or the oxidant gas fed to the fuel cell change; suppressing the degradation of the anode, cathode and polymer electrolyte membrane; and thus reducing the deterioration of the cell performance readily and reliably. The polymer electrolyte fuel cell includes: a polymer electrolyte membrane; an anode and a cathode which are arranged in such a manner as to hold the polymer electrolyte membrane between them; and a pair of separators having a first gas flow path for feeding fuel gas to the anode and discharging fuel gas from the anode and a second gas flow path for feeding oxidant gas to the cathode and discharging oxidant gas from the cathode, where a notched portion is made on each of the anode and the cathode in such a position so as to allow the two notched portions to face each other, the polymer electrolyte membrane is held by the pair of separators in that position, and the polymer electrolyte membrane is supported by reinforcing members having gas permeability in the notches.
Abstract:
An operation method is provided for a polymer electrolyte fuel cell in an optimum operating condition by regulating the cell by a function represented by a gas flow rate and the difference between a saturated steam pressure and an actual steam pressure, by regulating an in-plane temperature distribution obtained by a cooling water flow direction and by the regulation of a cooling water inlet temperature and a cooling water flow amount; a gas supply amount; a supplied moisture amount; and a current density.
Abstract:
A method of preserving a PEFC stack of the present invention is a method of preserving a PEFC stack that is provided with an oxidizing agent passage having an inlet and an outlet and extending through a cathode and a reducing agent passage having an inlet and an outlet and extending through an anode. The method comprises preserving the polymer electrolyte fuel cell stack in an uninstalled state under a condition in which an oxygen concentration within the oxidizing agent passage and within the reducing agent passage is lower than an oxygen concentration in atmospheric air.