Abstract:
The present invention is directed to non-cytotoxic protein conjugates for inhibition or reduction of exocytic fusion in a nociceptive sensory afferent cell. The protein conjugates comprise: (i) a dynorphin Targeting Moiety (TM), wherein the TM is an agonist of a receptor present on a nociceptive sensory afferent cell, and wherein the receptor undergoes endocytosis to be incorporated into an endosome within the nociceptive sensory afferent cell; (ii) a non-cytotoxic protease or a fragment thereof, wherein the protease or protease fragment is capable of cleaving a protein of the exocytic fusion apparatus of the nociceptive sensory afferent cell; and (iii) a Translocation Domain, wherein the Translocation Domain translocates the protease or protease fragment from within the endosome, across the endosomal membrane, and into the cytosol of the nociceptive sensory afferent cell. Nucleic acid sequences encoding the protein conjugates, methods of preparing same and uses thereof are also described.
Abstract:
A single chain, polypeptide fusion protein, comprising: a non-cytotoxic protease, or a fragment thereof, which protease or protease fragment is capable of cleaving a protein of the exocytic fusion apparatus of a nociceptive sensory afferent; a dynorphin Targeting Moiety that is capable of binding to a Binding Site on the nociceptive sensory afferent, which Binding Site is capable of undergoing endocytosis to be incorporated into an endosome within the nociceptive sensory afferent; a protease cleavage site at which site the fusion protein is cleavable by a protease, wherein the protease cleavage site is located between the non-cytotoxic protease or fragment thereof and the dynorphin Targeting Moiety; and a translocation domain that is capable of translocating the protease or protease fragment from within an endosome, across the endosomal membrane and into the cytosol of the nociceptive sensory afferent. Nucleic acid sequences encoding the polypeptide fusion proteins, methods of preparing same and uses thereof are also described.
Abstract:
The specification discloses Clostridial toxins or Clostridial toxin chimeras comprising an inactivation cleavage site, polynucleotide molecules encoding such toxins or chimeras, compositions comprising such toxins or chimeras, and method of producing such toxins or chimeras.
Abstract:
The specification discloses Clostridial toxins or Clostridial toxin chimeras comprising an inactivation cleavage site, polynucleotide molecules encoding such toxins or chimeras, compositions comprising such toxins or chimeras, and method of producing such toxins or chimeras.
Abstract:
The present specification discloses TVEMPs, compositions comprising such TVEMPs and methods of treating cancer in a mammal using such TVEMP compositions.
Abstract:
Single chain polypeptide fusion protein, comprising: a non-cytotoxic protease capable of cleaving a protein of the exocytic fusion apparatus of a nociceptive sensory afferent; a galanin targeting moiety; a protease cleavage site; a translocation domain; a first spacer located between the non-cytotoxic protease and the protease cleavage site; and a second spacer located between the galanin targeting moiety and the translocation domain.
Abstract:
The specification discloses Clostridial toxins or Clostridial toxin chimeras comprising an inactivation cleavage site, polynucleotide molecules encoding such toxins or chimeras, compositions comprising such toxins or chimeras, and method of producing such toxins or chimeras.
Abstract:
The present invention is directed to non-cytotoxic protein conjugates for inhibition or reduction of exocytic fusion in a nociceptive sensory afferent cell. The protein conjugates comprise: (i) a Targeting Moiety (TM), wherein the TM is an agonist of a receptor present on a nociceptive sensory afferent cell, and wherein the receptor undergoes endocytosis to be incorporated into an endosome within the nociceptive sensory afferent cell; (ii) a non-cytotoxic protease or a fragment thereof, wherein the protease or protease fragment is capable of cleaving a protein of the exocytic fusion apparatus of the nociceptive sensory afferent cell; and (iii) a Translocation Domain, wherein the Translocation Domain translocates the protease or protease fragment from within the endosome, across the endosomal membrane, and into the cytosol of the nociceptive sensory afferent cell wherein the Targeting Moiety is selected from the group consisting of BAM, β-endorphin, bradykinin, substance P, dynorphin and/or nociceptin.