Abstract:
Polypeptides, such as a multi-valent polypeptide designated svD2, useful in pharmaceutical compositions for stimulation of the adaptive arm of the immune system. svD2 demonstrated in vivo activity in a syngeneic mouse model. svD2 is biologically active at nanomolar concentrations. These properties are believed to result as a consequence of the ability of svD2 to cross-link cell-surface receptors.
Abstract:
The present invention relates to a skin-permeating peptide, and more particularly, the present invention relates to an isolated peptide capable of permeating the skin to deliver a drug to the skin, to an isolated polynucleotide coding the peptide, to a composition for transdermal delivery comprising the peptide, and to a peptide/cargo composite comprising the peptide and cargo.
Abstract:
The present invention relates to methods of drug delivery for the treatment of a condition or disease, such as cancer. In one embodiment, the invention provides a method of preparing a multifunctional nanoconjugate of temozolomide (TMZ) by conjugating TMZ in its hydrazide form to a polymalic acid platform. In another embodiment, the polymalic acid platform is conjugated to a monoclonal antibody to transferrin receptor, a trileucine (LLL) moiety, and/or a polyethylene glycol (PEG) moiety. The present invention relates to methods of drug delivery for the treatment of a condition or disease, such as cancer. In one embodiment, the invention provides a method of preparing a multifunctional nanoconjugate of temozolomide (TMZ) by conjugating TMZ in its hydrazide form to a polymalic acid platform. In another embodiment, the polymalic acid platform is conjugated to a monoclonal antibody to transferrin receptor, a trileucine (LLL) moiety, and/or a polyethylene glycol (PEG) moiety.
Abstract:
Provided are a peptide compound prepared by additional synthesis in a drug having an effect of inhibiting restenosis, a composition for inhibiting restenosis and promoting re-endothelialization including the peptide compound, and a stent having a surface coated by using the composition, in order to overcome a restenosis problem in the stent.
Abstract:
The present invention relates to the formation of protein conjugates from proteins chemically modified for linkage to (1) anticancer drug pharmacophores, (2) ligands to biomarkers on cancer cell surfaces, (3) and/or another protein molecule. It provides and specifies new compositions, methods and combinations for tumor, and tumor vasculature targeting and cancer treatment.
Abstract:
Compositions for detecting and/or destroying cancer tumors and/or cancer cells via photodynamic therapy are disclosed, as well as methods of use thereof. The compositions comprise a linking protein or peptide attached to or otherwise physically associated with a carbon nanotube to form a targeted protein-carbon nanotube complex.
Abstract:
The invention relates to small cell penetrating peptides (CPP) derived from the scorpion toxin maurocalcine and to their use as vectors for the intracellular delivery of various drugs and agents.
Abstract:
Disclosed is a general methodology to create nanofibers of therapeutic molecules that have a dual role, as both the delivery vehicle and the drug itself. It is shown that with proper molecular design, the integration of enzymatic reaction and self-assembly provides a powerful method to create molecular hydrogels of clinically-used therapeutics without compromising their bioactivities. In addition, the results disclosed herein demonstrate enzyme-instructed self-assembly as a facile strategy for generating the supramolecular hydrogels of molecules that inherently have poor solubility in water. For example, by covalently connecting paclitaxel with a motif that is prone to self-assemble, a hydrogel of paclitaxel can be formed without compromising the activity of the paclitaxel.
Abstract:
In an embodiment of the invention, a composition for treating a cell population comprises an Affinity Medicant Conjugate (AMC). The medicant moiety can be a toxin including an acylfulvene or a drug moiety. The affinity moiety can be an antibody, a binding protein, a steroid, a lipid, a growth factor, a protein, a peptide or non peptidic. The affinity moiety can be covalently bound to the medicant via a linker. Novel linkers that can be directed to cysteine, arginine or lysine residues based on solution pH allow greater flexibility in preserving and/or generating specific epitopes in the AMC.