摘要:
Methods for standard cells using finFET standard cell structures with polysilicon on OD edges. Standard cells are defined using finFET transistors and having gate structures forming a transistor at an intersection with a semiconductor fin. Polysilicon dummy structures are formed on the edges of the active areas or OD areas of the standard cells. In a design flow, a pre-layout netlist schematic for the standard cells includes a three terminal MOS device corresponding to the polysilicon dummy structure on the edges of the standard cell. After an automated place and route process forms a device layout using the standard cells, a post layout netlist is extracted. Where two standard cells abut one another, a single polysilicon dummy structure is formed on the common boundary. A layout versus schematic comparison is then performed comparing the pre-layout netlist and the post-layout netlist to verify the layout obtained. Additional methods are disclosed.
摘要:
Methods for verifying the layout for standard cells using finFET standard cell structures with polysilicon on cell edges. Standard cells are defined using finFET transistors. Polysilicon dummy structures are formed on the edges of the active areas of the standard cells. Where two standard cells abut a single polysilicon dummy structure is formed. In a design flow, a pre-layout netlist schematic for the standard cells is formed that does not include devices corresponding to the polysilicon dummy structures. After an automated place and route process forms a device layout using the standard cells, a post layout netlist schematic is extracted including MOS devices corresponding to the polysilicon dummy structures. A layout versus schematic comparison is then performed, but during the comparison MOS devices corresponding to the polysilicon dummy structures are filtered from the post-layout netlist and are not compared. Additional methods are disclosed.
摘要:
Methods for verifying the layout for standard cells using finFET standard cell structures with polysilicon on cell edges. Standard cells are defined using finFET transistors. Polysilicon dummy structures are formed on the edges of the active areas of the standard cells. Where two standard cells abut a single polysilicon dummy structure is formed. In a design flow, a pre-layout netlist schematic for the standard cells is formed that does not include devices corresponding to the polysilicon dummy structures. After an automated place and route process forms a device layout using the standard cells, a post layout netlist schematic is extracted including MOS devices corresponding to the polysilicon dummy structures. A layout versus schematic comparison is then performed, but during the comparison MOS devices corresponding to the polysilicon dummy structures are filtered from the post-layout netlist and are not compared. Additional methods are disclosed.
摘要:
Methods for verifying the layout for standard cells using finFET standard cell structures with polysilicon on cell edges. Standard cells are defined using finFET transistors. Polysilicon dummy structures are formed on the edges of the active areas of the standard cells. Where two standard cells abut a single polysilicon dummy structure is formed. In a design flow, a pre-layout netlist schematic for the standard cells is formed that does not include devices corresponding to the polysilicon dummy structures. After an automated place and route process forms a device layout using the standard cells, a post layout netlist schematic is extracted including MOS devices corresponding to the polysilicon dummy structures. A layout versus schematic comparison is then performed, but during the comparison MOS devices corresponding to the polysilicon dummy structures are filtered from the post-layout netlist and are not compared. Additional methods are disclosed.
摘要:
Methods for verifying the layout for standard cells using finFET standard cell structures with polysilicon on cell edges. Standard cells are defined using finFET transistors. Polysilicon dummy structures are formed on the edges of the active areas of the standard cells. Where two standard cells abut a single polysilicon dummy structure is formed. In a design flow, a pre-layout netlist schematic for the standard cells is formed that does not include devices corresponding to the polysilicon dummy structures. After an automated place and route process forms a device layout using the standard cells, a post layout netlist schematic is extracted including MOS devices corresponding to the polysilicon dummy structures. A layout versus schematic comparison is then performed, but during the comparison MOS devices corresponding to the polysilicon dummy structures are filtered from the post-layout netlist and are not compared. Additional methods are disclosed.
摘要:
Methods for standard cells using finFET standard cell structures with polysilicon on OD edges. Standard cells are defined using finFET transistors and having gate structures forming a transistor at an intersection with a semiconductor fin. Polysilicon dummy structures are formed on the edges of the active areas or OD areas of the standard cells. In a design flow, a pre-layout netlist schematic for the standard cells includes a three terminal MOS device corresponding to the polysilicon dummy structure on the edges of the standard cell. After an automated place and route process forms a device layout using the standard cells, a post layout netlist is extracted. Where two standard cells abut one another, a single polysilicon dummy structure is formed on the common boundary. A layout versus schematic comparison is then performed comparing the pre-layout netlist and the post-layout netlist to verify the layout obtained. Additional methods are disclosed.
摘要:
An integrated circuit design method comprises extracting parallel-connected parameters associated with circuit components of an integrated circuit (IC) based on a determination that the circuit components are connected in parallel. The method also comprises generating a parallel netlist that describes the circuit components, the parallel netlist comprising the parallel-connected parameters. The parallel-connected parameters are taken into consideration by a simulation that determines the performance capabilities of the IC.
摘要:
Methods for verifying the layout for standard cells using finFET standard cell structures with polysilicon on cell edges. Standard cells are defined using finFET transistors. Polysilicon dummy structures are formed on the edges of the active areas of the standard cells. Where two standard cells abut a single polysilicon dummy structure is formed. In a design flow, a pre-layout netlist schematic for the standard cells is formed that does not include devices corresponding to the polysilicon dummy structures. After an automated place and route process forms a device layout using the standard cells, a post layout netlist schematic is extracted including MOS devices corresponding to the polysilicon dummy structures. A layout versus schematic comparison is then performed, but during the comparison MOS devices corresponding to the polysilicon dummy structures are filtered from the post-layout netlist and are not compared. Additional methods are disclosed.