Abstract:
This disclosure relates generally to metasurface beam steering antenna and method of setting antenna beam angle. Conventional approaches perform electronically beam steering using phase array which requires bandwidth with higher data rates. The present disclosure enables metasurface antennas tilt antenna beam in a given direction, where the varactor diodes are operated in reverse bias so that different values of capacitors combination lead to electronic beam scanning. The processor of the metasurface beam steering antenna receives a command having an input angle to tilt the angle beam position. The processor processes the command by mapping the input angle with the set of c-shaped copper patch combination having the capacitor values using a predefined lookup table for setting the antenna beam angle based on a reference voltage generated by the varactor diode. The lookup table is iteratively updated with the capacitor values of the c-shaped copper patches.
Abstract:
Embodiments herein provide a system and method for screening and monitoring of cardiac diseases by analyzing acquired physiological signals. Unlike state of art approaches that consider only synchronized ECG and PPG signals for cardiac health analysis and do not consider PCG which is a critical signal for CAD analysis, the system synchronously captures physiological signals such as photo plethysmograph (PPG), phonocardiogram (PCG) and electrocardiogram (ECG) from subject(s) and builds an analytical model in the cloud for analyzing heart conditions from the captured physiological signals. The system and method provides a fusion based approach of combining the captured physiological signals such as PPG, PCG and ECG along with other details such as subject clinical information, demography information and so on. The analytical model is pretrained using ECG. PPG and PCG along with metadata associated with the subject such as demography and clinical information.
Abstract:
Energy remains a critical challenge for continuous sensing: with low-capacity batteries, wearable devices require frequent charging. In contrast, installing sensors in everyday ‘smart objects’, such as kitchen cabinets, household appliances and office equipment, supports ADL detection via indirect observations on human interaction with such objects, but cannot provide individual-specific insights in multi-tenanted environments. The embodiments herein provide a method and system for energy efficient activity recognition and behavior analysis. Architecture disclosed utilizes a hybrid mode of inexpensive, battery-free sensing of physical activities performed by a subject been monitored during his Activities for Daily Living (ADLs). The sensing combines object interaction sensing with person-specific wearable sensing to recognize individual activities in smart spaces. The method and system disclosed quantifies a probabilistic approach that uses longitudinal observations of user-item interactions, over each individual episode, to compute the anomalous behavior of the subject.
Abstract:
Techniques for heart rate estimation are disclosed. In an embodiment, synchronized photoplethysmograph (PPG) and 3-axis acceleration signals are received. Further, the PPG and acceleration signals are partitioned into windows. Furthermore, it is determined whether motion is present in a window of the acceleration signal. Moreover, Fourier transform is performed on the signals to obtain power spectra of the signals in the window when there is motion. Also, it is determined whether a peak of the acceleration signal is present in a range around first highest PPG peak. Further, it is determined whether the peak of the acceleration signal affects heart rate of the user when the peak of the acceleration signal is in the range around the highest PPG peak. The heart rate of the user in the window is then estimated using second highest PPG peak when the peak of the acceleration signal affects heart rate of the user.
Abstract:
The present invention relates to a method and system for Phaseless Passive Synthetic Aperture Radar (PPSAR) imaging. Existing method for image reconstruction requires large number of measurements for satisfactory PPSAR image reconstruction. However, this leads to provisioning of more on-board storage and/or a high-speed data link between a mobile platform and a ground station. These requirements are undesirable in practice as PPSAR image reconstruction systems are deployed on resource constrained platforms. The present disclosure uses a regularized Wirtinger Flow (rWF) based approach that uses appropriate regularizers to facilitate the PPSAR image reconstruction with fewer measurements. Further the PPSAR image reconstruction is achieved using Alternating Direction Method of Multipliers (ADMM) by employing standard denoisers such as Total Variation (TV), Block-matching and 3D filtering (BM3D) and, Deep Image Prior (DIP). Further the present disclosure considers an actual location of transmitter for PPSAR imaging that yields better image reconstruction.
Abstract:
The disclosure herein generally relates to the field of determination of cardiopulmonary signals for multi-persons, and, more particularly, to determination of cardiopulmonary signals for multi-persons using in-body signals obtained by ultra-wide band (UWB) radar. The disclosed method determines of cardiopulmonary signals for multi-persons using in-body signals, wherein a UWB radar signals/waves reflected from inside a human body is utilized for efficient determination of cardiopulmonary signals. The disclosed method and system utilize the UWB radar signals to identify a number of persons along with several details about the persons that include a girth of the each identified person and the orientation of the identified person towards the one or more UWB radar. Further a chest wall distance, a breathing rate, a heart wall distance and a heart rate are determined for all the identified persons based on the identified girth and the identified orientation along with the UWB radar signals.
Abstract:
Radar based HR and BR measurements by simultaneous decoding is a technical problem due to presence of intermodulation of BR and HR harmonics, which degrades simultaneous decoding. Embodiments herein provide a method and system for unobtrusive liveliness detection and monitoring of a subject using a Dual Frequency Radar (DFR) in an IOT network. The system has the capability to completely process the captured raw signals onboard to by applying required signal conditioning and extraction of relevant information using unique signal processing techniques for determining the HR and the BR of the subject accurately. The intermodulation of BR and HR harmonics is eliminated by the system by performing frequency spectrum averaging of both radars signals, which improves the accuracy. Further, the system is configured with a light MQTT protocol and encoding modules for any data to be shared for off board processing, ensuring data security and privacy compliance.
Abstract:
This disclosure relates generally to tracking motion of target in indoor environment. The method includes estimating an initial position of the target in a mesh grid form based on radar data captured from radar devices installed in the indoor environment. For a subsequent target movement, a subsequent position of the target is estimated in the mesh grid form based on the initial position and a resultant velocity vector of the target. A number of outlier grid-points is computed with a threshold number, and based on comparison the outlier grid-points are either replaced with interpolated grid-points or the subsequent position of the target is repaired based on a probable position of the target obtained from at least one of a linear regression based analysis of prior positions of the target, prior knowledge of the target velocity and sampling interval, and a trilateration based technique.
Abstract:
A method and system is provided for vehicle speed profile generation. The method is performed by receiving data pertaining to driver characteristics and characteristics of trips taken by said driver, creating driver profile by generating skill and aggression parameters for said driver, constructing trip parameters pertaining to said trips taken by the driver by processing the skill and aggression parameters, constructing acceleration dataset for said trips, constructing speed values from the acceleration dataset and processing the speed values for anomalies.
Abstract:
This disclosure relates generally to data processing, and more particularly to a system and method for monitoring driving behavior of a driver. In one embodiment, a system (102) for monitoring driving behavior of a driver is disclosed. The system (102) may configure a processor (202) to execute computer-readable instructions (208) stored in a memory (206) in order to: capture a plurality of acceleration samples; compute Kurtosis values and Skewness values corresponding to a set of acceleration samples; filter the Kurtosis values; determine a probability distribution function of the filtered Kurtosis values; compute a mean and a standard deviation associated with the filtered Kurtosis values; determine a first threshold for each driver based upon the mean and the standard deviation; compute a first score for each driver based upon the first threshold and the number of trips; determine a second threshold; compute a second score for each driver based upon the second threshold and the number of trips; and evaluate driving behavior of a driver based upon the first score and the second score.