Abstract:
An athermally packaged optical fiber device, such as a Bragg grating, is provided. The device includes a hollow structure, and a free and a threaded member projecting in the hollow structure from both ends. The optical fiber is mounted in tension inside the hollow structure through longitudinal fiber-receiving bores in both members, and has an anchor point affixed to each member with the grating therebetween. The anchor point of the threaded member is provided outside of the hollow structure, making the device more compact. The free and threaded members are rotatable together to adjust the resonant wavelength of the grating, and a nut may be provided to allow a fine-tuning. The hollow structure, free member and threaded member have a coefficient of thermal expansion selected so that they together compensate for the temperature dependency of the Bragg wavelength.
Abstract:
A dispersion compensator for the compensation of chromatic dispersion in a multi-channel light signal is provided. The compensator includes a pair of optical structures each having a waveguide and a Bragg grating provided therein. The Bragg grating has a plurality of grating components, each associated with one or a few of the channels to be compensated. An optical assembly propagates the light signal sequentially through both optical structures. The periods of the grating components are selected to allow compensation of chromatic dispersion experienced by this particular channel or these particular channels, thereby taking into account the dispersion slope of the light signal. Tuning means are also provided in order to adjust the dispersion of the grating components of each optical structures, and proper selection of the tuning parameters allows tuning independently both the dispersion and dispersion slope.
Abstract:
All fiber construction Gires-Tournois interferometers for chromatic dispersion compensation of an optical signal are provided. The interferometers are made of overlapping chirped fiber Bragg gratings having a wide band reflectivity response. In one embodiment, a plurality of FBG interferometers can be cascaded for providing the chromatic dispersion compensation. In another embodiment, an FBG dispersion compensator provided with a pair of multi-cavity FBG interferometers is also provided. The dispersion compensator is provided with two temperature controlling means, each being operationally connected to one of the multi-cavity interferometer for thermo-optically shifting a spectral response thereof, thereby providing a tunable dispersion compensator capable of compensating for all orders of dispersion.