Abstract:
A method of operating a wireless communication system is disclosed (FIG. 6). The method includes receiving a virtual cell identification (VCID) parameter (600) from a remote transmitter. A base sequence index (BSI) and a cyclic shift hopping (CSH) parameter (604,606) are determined in response to the VCID. A pseudo-random sequence is selected in response to the BSI and CSH (610,612). A reference signal is generated using the selected pseudo-random sequence (614).
Abstract:
A method of operating a wireless communication system is disclosed (FIG. 6). The method includes receiving a virtual cell identification (VCID) parameter (600) from a remote transmitter. A base sequence index (BSI) and a cyclic shift hopping (CSH) parameter (604,606) are determined in response to the VCID. A pseudo-random sequence is selected in response to the BSI and CSH (610,612). A reference signal is generated using the selected pseudo-random sequence (614).
Abstract:
A method of operating a wireless communication system is disclosed (FIG. 6). The method includes receiving a virtual cell identification (VCID) parameter (600) from a remote transmitter. A base sequence index (BSI) and a cyclic shift hopping (CSH) parameter (604,606) are determined in response to the VCID. A pseudo-random sequence is selected in response to the BSI and CSH (610,612). A reference signal is generated using the selected pseudo-random sequence (614).
Abstract:
A detailed design of an LTE Link Adaptation function for LTE uplink is disclosed. A new approach for adapting SINR backoff in OLLA is used when serving non-time-sensitive radio bearers without target BLER constraint. A sub-optimal scheduler is also disclosed wherein the SINR measurements at the ILLA input are updated on each TTI for the UEs scheduled in that sub-frame for future UL transmission with a fresher interference measurement from the sub-frame preceding by 8 ms the actual transmission sub-frame. This allows for exploitation of a correlation peak of the interference resulting from HARQ retransmissions. A schedule incorporating these features improves upon, with a minor complexity increase, the spectral efficiency performance of a low-complexity baseline scheduler only based on SINR updates at SRS rate.
Abstract:
A method of operating a wireless communication system (FIG. 4) is disclosed. The method includes receiving a plurality of reference signals from a respective plurality of transceivers (402). Each, of the plurality of reference signals is measured to produce a respective plurality of channel state information (CSI) measurements (404). An aggregated channel quality indicator (CQI) is calculated from measuring the plurality of reference signals (406). The aggregated CQI is transmitted to at least one transceiver of the respective plurality of transceivers (408).
Abstract:
A detailed design of an LTE Link Adaptation function for LTE uplink is disclosed. A new approach for adapting SINR backoff in OLLA is used when serving non-time-sensitive radio bearers without target BLER constraint. A sub-optimal scheduler is also disclosed wherein the SINR measurements at the ILLA input are updated on each TTI for the UEs scheduled in that sub-frame for future UL transmission with a fresher interference measurement from the sub-frame preceding by 8 ms the actual transmission sub-frame. This allows for exploitation of a correlation peak of the interference resulting from HARQ retransmissions. A schedule incorporating these features improves upon, with a minor complexity increase, the spectral efficiency performance of a low-complexity baseline scheduler only based on SINR updates at SRS rate.
Abstract:
A method of operating a wireless communication system is disclosed (FIG. 6). The method includes receiving a virtual cell identification (VCID) parameter (600) from a remote transmitter. A base sequence index (BSI) and a cyclic shift hopping (CSH) parameter (604,606) are determined in response to the VCID. A pseudo-random sequence is selected in response to the BSI and CSH (610,612). A reference signal is generated using the selected pseudo-random sequence (614).
Abstract:
A method of operating a wireless communication system is disclosed (FIG. 6). The method includes receiving a virtual cell identification (VCID) parameter (600) from a remote transmitter. A base sequence index (BSI) and a cyclic shift hopping (CSH) parameter (604,606) are determined in response to the VCID. A pseudo-random sequence is selected in response to the BSI and CSH (610,612). A reference signal is generated using the selected pseudo-random sequence (614).
Abstract:
A method of operating a wireless communication system (FIG. 4) is disclosed. The method includes receiving a plurality of reference signals from a respective plurality of transceivers (402). Each, of the plurality of reference signals is measured to produce a respective plurality of channel state information (CSI) measurements (404). An aggregated channel quality indicator (CQI) is calculated from measuring the plurality of reference signals (406). The aggregated CQI is transmitted to at least one transceiver of the respective plurality of transceivers (408).