Abstract:
A dielectric waveguide interconnect system has a dielectric waveguide (DWG) a core surrounded by a cladding along the length of the DWG. One or more periodic structures are embedded along the length of the DWG such that the core of the DWG is integral to each of the one or more periodic structures.
Abstract:
Described examples include a millimeter wave atomic clock apparatus, chip scale vapor cell, and fabrication method in which a low pressure dipolar molecule gas is provided in a sealed cavity with a conductive interior surface forming a waveguide. Non-conductive apertures provide electromagnetic entrance to, and exit from, the cavity. Conductive coupling structures formed on an outer surface of the vapor cell near the respective non-conductive apertures couple an electromagnetic field to the interior of the cavity for interrogating the vapor cell using a transceiver circuit at a frequency that maximizes the rotational transition absorption of the dipolar molecule gas in the cavity to provide a reference clock signal for atomic clock or other applications.
Abstract:
A digital system has a substrate having a top surface on which a waveguide is formed on the top surface of the substrate. The waveguide is formed by a conformal base layer formed on the top surface of the substrate, two spaced apart sidewalls, and a top conformal layer connected to the base layer to form a longitudinal core region. The waveguide may be a metallic or otherwise conductive waveguide, a dielectric waveguide, a micro-coax, etc.
Abstract:
A digital system has a dielectric core waveguide that has a longitudinal dielectric core member. The core member has a body portion and a transition region, with a cladding surrounding the dielectric core member. The body portion of the core member has a first dielectric constant. The transition region of the core member has a graduated dielectric constant value that gradually changes from the first dielectric constant value adjacent the body portion to a third dielectric constant.
Abstract:
A digital system has a dielectric core waveguide that has a longitudinal dielectric core member. The core member has a body portion and a transition region, with a cladding surrounding the dielectric core member. The body portion of the core member has a first dielectric constant. The transition region of the core member has a graduated dielectric constant value that gradually changes from the first dielectric constant value adjacent the body portion to a third dielectric constant.
Abstract:
A digital system has a dielectric core waveguide that has a longitudinal dielectric core member. The core member has a body portion and may have a cladding surrounding the dielectric core member. A radiated radio frequency (RF) signal may be received on a first portion of a radiating structure embedded in the end of a dielectric waveguide (DWG). Simultaneously, a derivative RF signal may be launched into the DWG from a second portion of the radiating structure embedded in the DWG.
Abstract:
A digital system has a dielectric core waveguide that has a longitudinal dielectric core member. The core member has a body portion and a transition region, with a cladding surrounding the dielectric core member. The body portion of the core member has a first dielectric constant. The transition region of the core member has a graduated dielectric constant value that gradually changes from the first dielectric constant value adjacent the body portion to a third dielectric constant.
Abstract:
A digital system has a substrate having a top surface on which a waveguide is formed on the top surface of the substrate. The waveguide is formed by a conformal base layer formed on the top surface of the substrate, two spaced apart sidewalls, and a top conformal layer connected to the base layer to form a longitudinal core region. The waveguide may be a metallic or otherwise conductive waveguide, a dielectric waveguide, a micro-coax, etc.
Abstract:
Described examples include a millimeter wave atomic clock apparatus, chip scale vapor cell, and fabrication method in which a low pressure dipolar molecule gas is provided in a sealed cavity with a conductive interior surface forming a waveguide. Non-conductive apertures provide electromagnetic entrance to, and exit from, the cavity. Conductive coupling structures formed on an outer surface of the vapor cell near the respective non-conductive apertures couple an electromagnetic field to the interior of the cavity for interrogating the vapor cell using a transceiver circuit at a frequency that maximizes the rotational transition absorption of the dipolar molecule gas in the cavity to provide a reference clock signal for atomic clock or other applications.
Abstract:
A digital system has a substrate having a top surface on which a waveguide is formed on the top surface of the substrate. The waveguide is formed by a conformal base layer formed on the top surface of the substrate, two spaced apart sidewalls, and a top conformal layer connected to the base layer to form a longitudinal core region. The waveguide may be a metallic or otherwise conductive waveguide, a dielectric waveguide, a micro-coax, etc.