Abstract:
Read-only (“RO”) data consisting of a physically unclonable function (“PUF”) pattern is written to a ferroelectric random-access memory (“FRAM”) memory array. The FRAM array is baked to imprint the PUF pattern with a selected average depth of imprint and a corresponding average read reliability. The average depth of imprint and corresponding average read reliability are determined during testing after baking. The PUF pattern as read after baking is compared to the PUF pattern as written prior to baking. Additional PUF pattern writing and baking cycles may be performed until the average depth of imprint and associated read reliability reach a first selected level. Integrated circuits determined to be over-imprinted by exceeding a second selected level may be rejected. The first and second levels of PUF pattern imprint are selected such as to produce FRAM arrays with a unique fingerprint for each individual FRAM array-containing integrated circuit.
Abstract:
Read-only (“RO”) data to be permanently imprinted in storage cells of a memory array are written to the memory array. One or more over-stress conditions such as heat, over-voltage, over-current and/or mechanical stress are then applied to the memory array or to individual storage cells within the memory array. The over-stress condition(s) act upon one or more state-determining elements of the storage cells to imprint the RO data. The over-stress condition permanently alters a value of a state-determining property of the state-determining element without incapacitating normal operation of the storage cell. The altered value of the state-determining property biases the cell according to the state of the RO data bit. The bias is detectable in the cell read-out signal. A pre-written ferroelectric random-access memory (“FRAM”) array is baked. Baking traps electric dipoles oriented in a direction corresponding to a state of the pre-written data and forms am RO data imprint.
Abstract:
Read-only (“RO”) data to be permanently imprinted in storage cells of a memory array are written to the memory array. One or more over-stress conditions such as heat, over-voltage, over-current and/or mechanical stress are then applied to the memory array or to individual storage cells within the memory array. The over-stress condition(s) act upon one or more state-determining elements of the storage cells to imprint the RO data. The over-stress condition permanently alters a value of a state-determining property of the state-determining element without incapacitating normal operation of the storage cell. The altered value of the state-determining property biases the cell according to the state of the RO data bit. The bias is detectable in the cell read-out signal. A pre-written ferroelectric random-access memory (“FRAM”) array is baked. Baking traps electric dipoles oriented in a direction corresponding to a state of the pre-written data and forms am RO data imprint.
Abstract:
Read-only (“RO”) data consisting of a physically unclonable function (“PUF”) pattern is written to a ferroelectric random-access memory (“FRAM”) memory array. The FRAM array is baked to imprint the PUF pattern with a selected average depth of imprint and a corresponding average read reliability. The average depth of imprint and corresponding average read reliability are determined during testing after baking. The PUF pattern as read after baking is compared to the PUF pattern as written prior to baking. Additional PUF pattern writing and baking cycles may be performed until the average depth of imprint and associated read reliability reach a first selected level. Integrated circuits determined to be over-imprinted by exceeding a second selected level may be rejected. The first and second levels of PUF pattern imprint are selected such as to produce FRAM arrays with a unique fingerprint for each individual FRAM array-containing integrated circuit.
Abstract:
Read-only (“RO”) data consisting of a physically unclonable function (“PUF”) pattern is written to a ferroelectric random-access memory (“FRAM”) memory array. The FRAM array is baked to imprint the PUF pattern with a selected average depth of imprint and a corresponding average read reliability. The average depth of imprint and corresponding average read reliability are determined during testing after baking. The PUF pattern as read after baking is compared to the PUF pattern as written prior to baking. Additional PUF pattern writing and baking cycles may be performed until the average depth of imprint and associated read reliability reach a first selected level. Integrated circuits determined to be over-imprinted by exceeding a second selected level may be rejected. The first and second levels of PUF pattern imprint are selected such as to produce FRAM arrays with a unique fingerprint for each individual FRAM array-containing integrated circuit.
Abstract:
Read-only (“RO”) data to be permanently imprinted in storage cells of a memory array are written to the memory array. One or more over-stress conditions such as heat, over-voltage, over-current and/or mechanical stress are then applied to the memory array or to individual storage cells within the memory array. The over-stress condition(s) act upon one or more state-determining elements of the storage cells to imprint the RO data. The over-stress condition permanently alters a value of a state-determining property of the state-determining element without incapacitating normal operation of the storage cell. The altered value of the state-determining property biases the cell according to the state of the RO data bit. The bias is detectable in the cell read-out signal. A pre-written ferroelectric random-access memory (“FRAM”) array is baked. Baking traps electric dipoles oriented in a direction corresponding to a state of the pre-written data and forms am RO data imprint.
Abstract:
Read-only (“RO”) data consisting of a physically unclonable function (“PUF”) pattern is written to a ferroelectric random-access memory (“FRAM”) memory array. The FRAM array is baked to imprint the PUF pattern with a selected average depth of imprint and a corresponding average read reliability. The average depth of imprint and corresponding average read reliability are determined during testing after baking The PUF pattern as read after baking is compared to the PUF pattern as written prior to baking Additional PUF pattern writing and baking cycles may be performed until the average depth of imprint and associated read reliability reach a first selected level. Integrated circuits determined to be over-imprinted by exceeding a second selected level may be rejected. The first and second levels of PUF pattern imprint are selected such as to produce FRAM arrays with a unique fingerprint for each individual FRAM array-containing integrated circuit.