Abstract:
A system for error correction code (ECC) management of write-once memory (WOM) codes includes, for example, a controller for selecting between one of a WOM (Write-Once Memory) mode and an ECC (error correction code) mode. A codec is arranged to operate in the selected mode. The codec while operating in the ECC mode is arranged to identify a bit position of at least one bit error in response to ECC parity bits of a first received data word. The codec while operating in the WOM mode is arranged to receive a WOM-encoded word from an addressed location in a WOM device, to receive a second received data word to be encoded and written to the addressed location, and to generate WOM-encoded word for writing to the addressed location in the WOM device. The WOM-encoded word for writing to the addressed location is optionally ECC encoded.
Abstract:
Read-only (“RO”) data consisting of a physically unclonable function (“PUF”) pattern is written to a ferroelectric random-access memory (“FRAM”) memory array. The FRAM array is baked to imprint the PUF pattern with a selected average depth of imprint and a corresponding average read reliability. The average depth of imprint and corresponding average read reliability are determined during testing after baking. The PUF pattern as read after baking is compared to the PUF pattern as written prior to baking. Additional PUF pattern writing and baking cycles may be performed until the average depth of imprint and associated read reliability reach a first selected level. Integrated circuits determined to be over-imprinted by exceeding a second selected level may be rejected. The first and second levels of PUF pattern imprint are selected such as to produce FRAM arrays with a unique fingerprint for each individual FRAM array-containing integrated circuit.
Abstract:
A flow meter ultrasonically measures fluid velocity in a pipe and ultrasonically transmits fluid flow data along the pipe. An ultrasonic transducer used for fluid velocity measurement may optionally also be used for communication of flow data, and optionally, the ultrasonic frequency for fluid velocity measurement may be the same as the ultrasonic frequency for communication of flow data.
Abstract:
A system for write-once memory (WOM) code emulation of EEPROM-type devices includes, for example, a host processor for sending data words for storing in a WOM (Write-Only Memory) device. A host interface receives the data words for encoding by a WOM controller. An emulator programs the WOM-encoded data and an address identifier as an entry of the WOM device. The emulator overwrites previously programmed WOM-encoded data by searching entries of a current active page of a WOM device to locate a programmed WOM entry that includes the searched-for address identifier and the previously written WOM-encoded data word. When the previously written WOM-encoded word cannot be correctly overwritten, the contents of the second WOM-encoded word are stored in a new entry. When the current active page is substantially full, the new entry is stored a new page and the current active page is block-erased.
Abstract:
Read-only (“RO”) data to be permanently imprinted in storage cells of a memory array are written to the memory array. One or more over-stress conditions such as heat, over-voltage, over-current and/or mechanical stress are then applied to the memory array or to individual storage cells within the memory array. The over-stress condition(s) act upon one or more state-determining elements of the storage cells to imprint the RO data. The over-stress condition permanently alters a value of a state-determining property of the state-determining element without incapacitating normal operation of the storage cell. The altered value of the state-determining property biases the cell according to the state of the RO data bit. The bias is detectable in the cell read-out signal. A pre-written ferroelectric random-access memory (“FRAM”) array is baked. Baking traps electric dipoles oriented in a direction corresponding to a state of the pre-written data and forms am RO data imprint.
Abstract:
Data words to be written to a memory location are delta encoded in multi-write avoidance (“MWA”) code words. MWA code words result in no re-writing of single-bit storage cells containing logical “0's” to a “0” state and no re-writing of logical “1's” to cells that have already been written once to a logical “1.” Potential MWA code words stored in a look-up table (“LUT”) are indexed by a difference word DELTA_D. DELTA_D represents a bitwise difference (“delta”) between a data word currently stored at the memory location and a new data word (“NEW_D”) to be stored at the memory location. Validation and selection logic chooses an MWA code word representing NEW_D to be written if the MWA code word does not violate the principle of multi-write avoidance. Some embodiments generate the MWA code words using a pattern generator rather than indexing the MWA code words from a LUT.
Abstract:
A system for write-once memory (WOM) code emulation of EEPROM-type devices includes, for example, a host processor for sending data words for storing in a WOM (Write-Only Memory) device. A host interface receives the data words for encoding by a WOM controller. An emulator programs the WOM-encoded data and an address identifier as an entry of the WOM device. The emulator overwrites previously programmed WOM-encoded data by searching entries of a current active page of a WOM device to locate a programmed WOM entry that includes the searched-for address identifier and the previously written WOM-encoded data word. When the previously written WOM-encoded word cannot be correctly overwritten, the contents of the second WOM-encoded word are stored in a new entry. When the current active page is substantially full, the new entry is stored a new page and the current active page is block-erased.
Abstract:
Read-only (“RO”) data consisting of a physically unclonable function (“PUF”) pattern is written to a ferroelectric random-access memory (“FRAM”) memory array. The FRAM array is baked to imprint the PUF pattern with a selected average depth of imprint and a corresponding average read reliability. The average depth of imprint and corresponding average read reliability are determined during testing after baking The PUF pattern as read after baking is compared to the PUF pattern as written prior to baking Additional PUF pattern writing and baking cycles may be performed until the average depth of imprint and associated read reliability reach a first selected level. Integrated circuits determined to be over-imprinted by exceeding a second selected level may be rejected. The first and second levels of PUF pattern imprint are selected such as to produce FRAM arrays with a unique fingerprint for each individual FRAM array-containing integrated circuit.
Abstract:
Methods and apparatus for creating a physically unclonable function for SRAM are disclosed. An example method includes decreasing a supply voltage of a memory array to a first voltage level, the first voltage level being below a normal operating voltage associated with the memory array, reading a first value of a bit cell after the supply voltage has been at the first voltage level, and determining a function based on the first value of the bit cell and a second value, the second value stored in the bit cell when the memory array is operating at a voltage level above the first voltage level, the function to represent an identification of a circuit including the memory array.
Abstract:
Disclosed embodiments include an electronic device having a write-once memory (WOM) and a memory controller. The memory controller includes a host interface receiving a data word including first and second symbols, each having at least two bits, a WOM controller that encodes the first and second symbols and outputs a WOM-encoded word including first and second WOM codes corresponding to the first and second symbols, respectively, an error correction code (ECC) controller that encodes the WOM-encoded word and outputs an ECC-encoded word including the first and second WOM codes and a first set of ECC bits corresponding to a first write operation, and a memory device interface that writes the ECC-encoded word the WOM device in the first write operation. Each of the first and second WOM codes include at least three bits with at least two of the at least three bits having the same logic value.