Abstract:
A method of testing devices under test (DUTs) and testing system are disclosed. The method comprises generating at least one control signal associated with a test pattern structure received from a testing system. The method further comprises selecting M1 number of ports from M number of I/O ports in the DUT to receive scan input corresponding to the test pattern structure based on the control signal, selecting M2 number of ports from the M number of I/O ports to provide scan output based on the control signal, wherein each of M1 and M2 is a number selected from 0 to M, and wherein a sum of M1 and M2 is less than or equal to M. Thereafter, the method comprises performing a scan testing of the DUT based on the scan input provided to the M1 number of ports and receiving the scan output from the M2 number of ports.
Abstract:
A method of testing devices under test (DUTs) and testing system are disclosed. The method comprises generating at least one control signal associated with a test pattern structure received from a testing system. The method further comprises selecting M1 number of ports from M number of I/O ports in the DUT to receive scan input corresponding to the test pattern structure based on the control signal, selecting M2 number of ports from the M number of I/O ports to provide scan output based on the control signal, wherein each of M1 and M2 is a number selected from 0 to M, and wherein a sum of M1 and M2 is less than or equal to M. Thereafter, the method comprises performing a scan testing of the DUT based on the scan input provided to the M1 number of ports and receiving the scan output from the M2 number of ports.
Abstract:
A multi-die chip module (MCM) comprises a first die containing a first test controller and a second die containing a second test controller coupled to the first die via an interconnect. The first test controller is configured to place the first die in either a shift mode or a capture mode. The second controller is configured to place the second die in either the shift mode or the capture mode. After a scan shift operation, scan cells are initialized to predetermined values. During the capture operation one die remains in the shift mode and the other die enters the capture mode so that as test bits are shifted into registers associated with output pads on the die in the shift mode, the other die is in the capture mode and captures signals on input pads associated with that die, enabling scan based at-speed testing of the interconnect.
Abstract:
A multi-die chip module (MCM) comprises a first die containing a first test controller and a second die containing a second test controller coupled to the first die via an interconnect. The first test controller is configured to place the first die in either a shift mode or a capture mode. The second controller is configured to place the second die in either the shift mode or the capture mode. After a scan shift operation, scan cells are initialized to predetermined values. During the capture operation one die remains in the shift mode and the other die enters the capture mode so that as test bits are shifted into registers associated with output pads on the die in the shift mode, the other die is in the capture mode and captures signals on input pads associated with that die, enabling scan based at-speed testing of the interconnect.