Abstract:
A method of testing devices under test (DUTs) and testing system are disclosed. The method comprises generating at least one control signal associated with a test pattern structure received from a testing system. The method further comprises selecting M1 number of ports from M number of I/O ports in the DUT to receive scan input corresponding to the test pattern structure based on the control signal, selecting M2 number of ports from the M number of I/O ports to provide scan output based on the control signal, wherein each of M1 and M2 is a number selected from 0 to M, and wherein a sum of M1 and M2 is less than or equal to M. Thereafter, the method comprises performing a scan testing of the DUT based on the scan input provided to the M1 number of ports and receiving the scan output from the M2 number of ports.
Abstract:
In a method of testing a semiconductor wafer, a probe tip contacts a pad in a scribe line space between facing sides of first and second dies. The probe tip is electrically coupled to an automated test equipment (ATE). The second die is spaced apart from the first die. The scribe line space includes an interconnect extending along at least an entire length of the facing sides of the first and second dies. The pad is electrically coupled through the interconnect to at least one of the first or second dies. With the ATE, circuitry is tested in at least one of the first or second dies. The pad is electrically coupled through the interconnect to the circuitry.
Abstract:
A method of testing a device under test, the device under test comprising a scan chain having a number of storage elements. The method determines a representation of toggling events in a test sequence, where the test sequence is for testing the scan chain. The method also selectively times input of a bit sequence, corresponding to the test sequence, to a first storage element in the number of storage elements, and through the scan chain, in response to the determining step.
Abstract:
In one embodiment, a method of operating a computational system to evaluate a device under test, where the device under test is operable to receive a digital code input and output in response a corresponding output. The method injects a plurality of simulated faults into a pre-silicon model of the device under test. For each injected simulated fault, the method inputs a plurality of digital codes to the model. For each input digital code, the method selectively stores the input digital code if a difference, between a corresponding output for the input digital code and a no-fault output for the input, exceeds a predetermined threshold value.
Abstract:
Circuits and methods for performing self-test of digital circuits are disclosed. In an embodiment, a method includes applying a set of test patterns for performing scan testing of a digital circuit to generate scan outputs from the digital circuit. The set of test patterns includes one or more sets of base test patterns already stored in a memory and one or more sets of derived test patterns temporarily generated from the one or more sets of base test patterns. The method further includes comparing the scan outputs received from the digital circuit with reference scan outputs corresponding to the digital circuit for fault detection in the digital circuit to thereby achieve a target fault coverage of the scan testing of the digital circuit. The reference scan outputs corresponding to the digital circuit are stored in the memory.
Abstract:
An apparatus for concurrent test of a set of flash memory banks apparatus includes a memory data path (MDP) module coupled to a test controller. The MDP module includes a test control module configured to generate a concurrent control signal that configures the set of flash memory banks to be tested simultaneously; and a set of comparators, that generates a first comparator output in response to the concurrent control signal and an input from the set of flash memory banks. A reduction logic is configured to generate a reduction logic output that combines a status of the comparator outputs to be compressed. A control logic is configured for selective programming across different flash bits of the set of flash memory banks. A fail flag is configured to generate one of an output value ‘0’ if there is a mismatch in data read from the set of flash memory banks in any access, and an output value 1 if there is no mismatch in data read in any access.
Abstract:
A method of testing devices under test (DUTs) and testing system are disclosed. The method comprises generating at least one control signal associated with a test pattern structure received from a testing system. The method further comprises selecting M1 number of ports from M number of I/O ports in the DUT to receive scan input corresponding to the test pattern structure based on the control signal, selecting M2 number of ports from the M number of I/O ports to provide scan output based on the control signal, wherein each of M1 and M2 is a number selected from 0 to M, and wherein a sum of M1 and M2 is less than or equal to M. Thereafter, the method comprises performing a scan testing of the DUT based on the scan input provided to the M1 number of ports and receiving the scan output from the M2 number of ports.
Abstract:
In a method of testing a semiconductor wafer, a probe tip contacts a pad in a scribe line space between facing sides of first and second dies. The probe tip is electrically coupled to an automated test equipment (ATE). The second die is spaced apart from the first die. The scribe line space includes an interconnect extending along at least an entire length of the facing sides of the first and second dies. The pad is electrically coupled through the interconnect to at least one of the first or second dies. With the ATE, circuitry is tested in at least one of the first or second dies. The pad is electrically coupled through the interconnect to the circuitry.
Abstract:
In a method of testing a semiconductor wafer including a scribe line and multiple dies, the method includes implementing a first landing pad on the scribe line, and implementing a first interconnect on the scribe line and between the first landing pad and a first cluster of the dies, thereby coupling the first landing pad to the first cluster of dies. The method also includes performing the testing of the first cluster of dies using automated test equipment (ATE) coupled to a probe tip by contacting the first landing pad with the probe tip, and applying an ATE resource to the first cluster of dies.
Abstract:
A test circuit that includes a circuit to be calibrated, an error generation circuit, and a simplex circuit coupled to one another. The circuit to be calibrated is configured to implement a first plurality of trim codes as calibration parameters for a corresponding plurality of components of the circuit to be calibrated and generate a first actual output. The error generation circuit is configured to generate a first error signal based on a difference between the first actual output and an expected output of the circuit to be calibrated. The simplex circuit is configured to receive the first error signal from the error generation circuit, generate a second plurality of trim codes utilizing a simplex algorithm based on the first error signal, and transmit the second plurality of trim codes to the circuit to be calibrated.