Abstract:
In aspects of the present application, circuitry for storing data is provided including a static random access memory (SRAM) circuit operable to store data in an array of SRAM cell circuits arranged in rows and columns, each SRAM cell coupled to a pair of complementary bit lines disposed along the columns of SRAM cells circuits, and one or more precharge circuits in the SRAM memory circuit coupled to one or more pairs of the complementary bit lines and operable to charge the pairs of complementary bit lines to a precharge voltage, responsive to a precharge control signal. The precharge control signal within the SRAM circuit is operable to cause coupling transistors within the SRAM circuit to couple a pair of complementary bit lines to the precharge voltage responsive to mode signals output from a memory controller circuit external to the SRAM circuit, indicating a bitline precharge is to be performed.
Abstract:
In described examples, a memory controller circuit controls accesses to an SRAM circuit. Precharge mode control circuitry outputs: a burst mode enable signal to the SRAM circuit indicating that a series of SRAM cells along a selected row of SRAM cells will be accessed; a precharge first mode signal to the SRAM circuit indicating that a first access along the selected row will occur; and a precharge last mode signal to the SRAM circuit indicating that a last access along the selected row will occur. The SRAM circuit includes an array of SRAM cells arranged in rows and columns to store data. Each SRAM cell is coupled to: a corresponding word line along a row of SRAM cells; and a corresponding pair of complementary bit lines.
Abstract:
In described examples, a memory controller circuit controls accesses to an SRAM circuit. Precharge mode control circuitry outputs: a burst mode enable signal to the SRAM circuit indicating that a series of SRAM cells along a selected row of SRAM cells will be accessed; a precharge first mode signal to the SRAM circuit indicating that a first access along the selected row will occur; and a precharge last mode signal to the SRAM circuit indicating that a last access along the selected row will occur. The SRAM circuit includes an array of SRAM cells arranged in rows and columns to store data. Each SRAM cell is coupled to: a corresponding word line along a row of SRAM cells; and a corresponding pair of complementary bit lines.
Abstract:
In aspects of the present application, circuitry for storing data is provided including a static random access memory (SRAM) circuit operable to store data in an array of SRAM cell circuits arranged in rows and columns, each SRAM cell coupled to a pair of complementary bit lines disposed along the columns of SRAM cells circuits, and one or more precharge circuits in the SRAM memory circuit coupled to one or more pairs of the complementary bit lines and operable to charge the pairs of complementary bit lines to a precharge voltage, responsive to a precharge control signal. The precharge control signal within the SRAM circuit is operable to cause coupling transistors within the SRAM circuit to couple a pair of complementary bit lines to the precharge voltage responsive to mode signals output from a memory controller circuit external to the SRAM circuit, indicating a bitline precharge is to be performed.