Abstract:
A device includes first and second device terminals, a fuse, a first circuit, a first transistor, and a control circuit. The fuse terminal couples to the first device terminal. The first circuit couples to the second fuse terminal. The second fuse terminal has a first voltage. The first transistor has a first control input and first and second current terminals. The first current terminal couples to the second fuse terminal, and the second current terminal couples to the second device terminal. The control circuit: turns “on” the first transistor into a saturation region if the first voltage exceeds a threshold and a current through the fuse exceeds a trip threshold current of the fuse; and turns “on” the first transistor into a linear region if the first voltage exceeds a threshold and a current through the fuse is below the trip threshold current of the fuse.
Abstract:
A device includes first and second device terminals, a fuse, a first circuit, a first transistor, and a control circuit. The fuse terminal couples to the first device terminal. The first circuit couples to the second fuse terminal. The second fuse terminal has a first voltage. The first transistor has a first control input and first and second current terminals. The first current terminal couples to the second fuse terminal, and the second current terminal couples to the second device terminal. The control circuit: turns “on” the first transistor into a saturation region if the first voltage exceeds a threshold and a current through the fuse exceeds a trip threshold current of the fuse; and turns “on” the first transistor into a linear region if the first voltage exceeds a threshold and a current through the fuse is below the trip threshold current of the fuse.
Abstract:
Apparatus and method for controlling inductor current in a switch mode power supply. In one embodiment, a switch mode power supply includes an inductor, a high-side switch coupled to the inductor, a low-side switch coupled to the inductor, and a controller. The controller is coupled to at least one of the high-side switch and the low-side switch. The controller includes a first capacitor and a current source. The controller is configured to control timing of current switching to the inductor by enabling current flow through the at least one of the high-side switch and the low-side switch based on time to charge the first capacitor via the current source. The time is a function of voltage across the inductor.
Abstract:
An active electromagnetic interference (EMI) filter includes a first amplifier and a second amplifier. The first amplifier is configured to sense noise signals on a power conductor. The second amplifier is coupled to the first amplifier and is configured to drive a cancellation signal onto the power conductor. The cancellation signal is to reduce the amplitude of the noise signals sensed by the first amplifier. An output impedance of the second amplifier is lower than an output impedance of the first amplifier.
Abstract:
A system includes a high side transistor switch coupled to a first voltage node and a low side transistor switch coupled to the high side transistor switch at a switch node. The system further includes a unidirectional decoupling capacitor circuit including a capacitive component. The unidirectional decoupling capacitor circuit is coupled between the first voltage node and a common potential. Responsive to a voltage on the first voltage node being more than a threshold greater than an input voltage to the first voltage node, the unidirectional decoupling capacitor circuit is configured to sink current from the first voltage node to the capacitive component. The capacitive component can therefore be charged, with the charge used to subsequently power a load.
Abstract:
A circuit includes a capacitor-drop power supply including a series combination of a resistor and a first capacitor. The capacitor-drop power supply includes an output and is adapted to be coupled to a light source. The circuit also includes a second capacitor, a switch, and an active clamp circuit. The second capacitor couples to the output of the capacitor-drop power supply. The switch couples in parallel with the series combination of the resistor and the first capacitor. The switch is configured to cause the light source to illuminate. The active clamp circuit couples to the capacitor-drop power supply. The active clamp circuit has an output coupled to the capacitor-drop power supply. The active clamp circuit is configured to cause current to continuously flow through at least one of the switch or the series combination of resistor and first capacitor regardless of a magnitude of the voltage across the second capacitor.
Abstract:
An active electromagnetic interference (EMI) filter includes a first amplifier and a second amplifier. The first amplifier is configured to sense noise signals on a power conductor. The second amplifier is coupled to the first amplifier and is configured to drive a cancellation signal onto the power conductor. The cancellation signal is to reduce the amplitude of the noise signals sensed by the first amplifier. An output impedance of the second amplifier is lower than an output impedance of the first amplifier.
Abstract:
A system comprising an ambient energy source, a power supply, and a power storage device. The ambient energy source is coupled to a first terminal end of an inductor. The power supply is also coupled to the first terminal end of the inductor. The power storage device is coupled to a second terminal end of the inductor. The ambient energy source provides power through the inductor in a first direction to the power storage device. The power storage device provides power through the inductor to the power supply in a second direction opposite the first direction.