Abstract:
A system comprises a set of sensors on a first end of a vehicle having the first end and a second end, and a controller. The sensors are configured to generate corresponding sensor data based on a detected marker along a direction of movement of the vehicle. A first sensor has a first inclination angle with respect to the detected marker, and a second sensor has a second inclination angle with respect to the detected marker. The controller is configured to compare a time at which the first sensor detected the marker with a time at which the second sensor detected the marker to identify the first end or the second end as a leading end of the vehicle, and to calculate a position of the leading end of the vehicle based on the sensor data generated by one or more of the first sensor or the second sensor.
Abstract:
A communication system for a guideway mounted vehicle includes a control system communication system configured to exchange information between the guideway mounted vehicle and an external control system. The communication system further includes a vehicle-to-vehicle communication system configured to exchange information between the guideway mounted vehicle and another vehicle along the guideway, wherein the vehicle-to-vehicle communication system is separate from the control system communication system, and the vehicle-to-vehicle communication system is configured to exchange information directly between the guideway mounted vehicle and the other vehicle. The communication system further includes a vital on-board controller (VOBC) configured to generate instructions for controlling the exchange of information between the guideway mounted vehicle and the control system through the control system communication system, and to generate instructions for controlling the exchange information between the guideway mounted vehicle and the other vehicle.
Abstract:
A locator loop control system includes a guideway configured to define a travel path of a vehicle. The locator loop control system further includes a locator loop located along the guideway, the locator loop configured to exchange information with a vital on-board controller (VOBC) on-board the vehicle. The locator loop control system further includes a first proximity plate located along the guideway, the first proximity plate spaced a first distance along the guideway from the locator loop, and a wayside controller configured to communicate with the locator loop.
Abstract:
Apparatuses, systems, methods, and software for train control and tracking using multi sensors, SSD/QR signs, and/or RF reflectors are disclosed, which enable determination of train location on a guideway, train movement authority, train length, and coupler status of each vehicle (married pair) and the consist (integrity) of the train.
Abstract:
A vehicle-based positioning system (VBPS) for a vehicle traversing a guideway, the VBPS includes an inertial navigation system (INS) on-board the vehicle, wherein the INS is configured to detect inertial parameters of the vehicle while the vehicle traverses the guideway, the detected inertial parameters including roll, pitch and yaw of the vehicle. The VBPS includes a guideway database, wherein the guideway database is configured to store inertial parameters of the guideway at a plurality of locations along the guideway, the stored inertial parameters include roll, pitch and yaw of the guideway. The VBPS further includes a vital on-board controller (VOBC), the VOBC is configured to determine a position of the vehicle based on a comparison of the detected inertial parameters with the stored inertial parameters. The VOBC is configured to limit comparison of the inertial parameters with the stored inertial parameters based on a latest checkpoint passed by the vehicle.
Abstract:
A fusion sensor arrangement includes a first sensor configured to detect the presence of an object along a wayside of a guideway, wherein the first sensor is sensitive to a first electromagnetic spectrum. The fusion sensor arrangement further includes a second sensor configured to detect the presence of the object along the wayside of the guideway, wherein the second sensor is sensitive to a second electromagnetic spectrum different from the first electromagnetic spectrum. The fusion sensor arrangement further includes a data fusion center connected to the first sensor and to the second sensor, wherein the data fusion center is configured to receive first sensor information from the first sensor and second sensor information from the second sensor, and to resolve a conflict between the first sensor information and the second sensor information.
Abstract:
A system comprises a speed detector, a marker sensor, a controller, a sensor unit, and a processor. The speed detector is configured to generate speed data associated with a movement of a vehicle. The marker sensor is configured to generate marker data based on a detection of an object along a wayside of a guideway. The controller is configured to calculate a distance the vehicle moved, generate location information, and generate an indication the vehicle is stationary. The sensor unit comprises an accelerometer, a gyroscope, and a magnetometer. The sensor unit is configured to generate sensor data based on information gathered by one or more of the accelerometer, the gyroscope, or the magnetometer. The processor is configured to process the sensor data to determine a vehicle position based on the sensor data and the location information. The controller is further configured to compare the location information with the vehicle position.
Abstract:
An SIL 4 over-speed protection device for a rail vehicle includes a first logical unit configured to be connected to a first power source, a first speed sensor and a first vital supervision circuit and a second logical unit configured to be connected to a second power source, a second speed sensor and a second vital supervision circuit. The first logical unit is configured to determine if the second logical unit is functioning properly and the second logical unit is configured to determine if the first logical unit is functioning properly.
Abstract:
A system comprises a set of sensors on a first end of a vehicle having the first end and a second end, and a controller. The sensors are configured to generate corresponding sensor data based on a detected marker along a direction of movement of the vehicle. A first sensor has a first inclination angle with respect to the detected marker, and a second sensor has a second inclination angle with respect to the detected marker. The controller is configured to compare a time at which the first sensor detected the marker with a time at which the second sensor detected the marker to identify the first end or the second end as a leading end of the vehicle, and to calculate a position of the leading end of the vehicle based on the sensor data generated by one or more of the first sensor or the second sensor.
Abstract:
A multimodal guideway vehicle sensor includes a passive sensor, an active sensor and an unique identification (ID) sensor. The passive sensor is configured to receive and detect a first electromagnetic radiation from a guideway vehicle. The active sensor configured to transmit a second electromagnetic radiation and receive and detect the second electromagnetic radiation reflected from the guideway vehicle. The ID sensor that detects an ID associated with the guideway vehicle. The multimodal guideway vehicle sensor also includes a data fusion center that combines signals from the passive sensor, the active sensor and the ID sensor to produce guideway vehicle information about the guideway vehicle.