Abstract:
Example implementations relate to Additive Manufacturing (AM) pressurization diffusers. An example diffuser includes an integral component configurable for receiving and diffusing pressurant. Particularly, the integral component includes multiple elements manufactured as a single-piece structure, including an inner filter, outer shell, and flange. The inner filter includes micro-diamond holes that enable pressurant received at an opening of the inner filter to diffuse out of the inner filter and subsequently through holes positioned in a shell surface of the outer shell. The flange can position the diffuser such that the opening of the inner filter is in pressurant communication with a pressurant source (e.g., opening of a tank) enabling the diffuser to receive and diffuse pressurant in a predefined pattern. For example, when the diffuser is positioned inside a tank, the diffuser can have a frustum configuration that helps diffuse pressurant upwards towards inner sidewalls of a pressure vessel, tube or channel.
Abstract:
Fluid apparatus and related methods are disclosed. An example fluid apparatus includes a valve body defining a fluid flow passageway and a plurality of valve seats. A flow control member is positioned in the fluid flow passageway of the valve body. The flow control member having a plurality of disks. A respective one of the disks moves relative to a respective one of the valve seats to control fluid flow through the valve body. The flow control member is adjustable relative to a longitudinal axis of the valve body to provide a preload to the disks. Each of the disks has a cracking pressure corresponding to the preload.
Abstract:
Example implementations relate to Additive Manufacturing (AM) pressurization diffusers. An example diffuser includes an integral component configurable for receiving and diffusing pressurant. Particularly, the integral component includes multiple elements manufactured as a single-piece structure, including an inner filter, outer shell, and flange. The inner filter includes micro-diamond holes that enable pressurant received at an opening of the inner filter to diffuse out of the inner filter and subsequently through holes positioned in a shell surface of the outer shell. The flange can position the diffuser such that the opening of the inner filter is in pressurant communication with a pressurant source (e.g., opening of a tank) enabling the diffuser to receive and diffuse pressurant in a predefined pattern. For example, when the diffuser is positioned inside a tank, the diffuser can have a frustum configuration that helps diffuse pressurant upwards towards inner sidewalls of a pressure vessel, tube or channel.
Abstract:
Fluid apparatus and related methods are disclosed. An example fluid apparatus includes a valve body defining a fluid flow passageway and a plurality of valve seats. A flow control member is positioned in the fluid flow passageway of the valve body. The flow control member having a plurality of disks. A respective one of the disks moves relative to a respective one of the valve seats to control fluid flow through the valve body. The flow control member is adjustable relative to a longitudinal axis of the valve body to provide a preload to the disks. Each of the disks has a cracking pressure corresponding to the preload.
Abstract:
A monolithic contactor for collecting target molecules, the monolithic contactor may include a monolithic body having an inlet end and a longitudinally opposed outlet end and a plurality of cells extending from proximate the inlet end to proximate the outlet end, wherein the target molecules are adsorbed to a surface of the body.
Abstract:
A monolithic contactor for collecting target molecules, the monolithic contactor may include a monolithic body having an inlet end and a longitudinally opposed outlet end and a plurality of cells extending from proximate the inlet end to proximate the outlet end, wherein the target molecules are adsorbed to a surface of the body.
Abstract:
Technologies are described herein for conditioning fluids stored in an underwater cryogenic storage vessel designed for use in a fuel system of an underwater vehicle. According to one aspect of the disclosure, a fuel system includes a fuel cell and a storage vessel, which stores a first fluid that is supplied to the fuel cell and a second fluid that is produced by the fuel cell. The fuel system also includes a thermal conditioning module that receives the first fluid from the storage vessel and receives the second fluid from the fuel cell. The first fluid stored in the storage vessel is conditioned by absorbing heat from the second fluid, such that the fuel cell receives the conditioned first fluid. The second fluid received from the fuel cell is in gaseous state and is converted to a liquid. The liquid second fluid is stored in the storage vessel.
Abstract:
A diffuser is disclosed and includes a channel with an inner portion having an inlet and an outlet through which a gaseous substance enters and exits the diffuser, respectively. The inner portion includes a first conical section that has an increasing cross-sectional area, taken along a plane perpendicular to a central axis, in a first direction. The inner portion also includes a second conical section that has a decreasing cross-sectional area, taken along a plane perpendicular to the central axis, in the first direction. The second conical section is communicatively coupled with the first conical section. The outer portion includes a first annular section that has an increasing cross-sectional area, taken along a plane perpendicular to the central axis, in a second direction opposite the first direction. The diffuser further includes a plurality of orifices that communicatively couple the second conical section with the first annular section.
Abstract:
Fluid apparatus and related methods are disclosed. An example fluid apparatus includes a housing defining a fluid flow passageway between an inlet and an outlet. The housing has a first valve seat and a second valve seat positioned in the fluid flow passageway. The first valve seat is spaced from the second valve seat. A flow control member is positioned in the fluid flow passageway. The flow control member has a first disk and a second disk. The first disk is to engage the first valve seat and the second disk to engage the second valve seat.
Abstract:
Fluid apparatus and related methods are disclosed. An example fluid apparatus includes a housing defining a fluid flow passageway between an inlet and an outlet. The housing has a first valve seat and a second valve seat positioned in the fluid flow passageway. The first valve seat is spaced from the second valve seat. A flow control member is positioned in the fluid flow passageway. The flow control member has a first disk and a second disk. The first disk is to engage the first valve seat and the second disk to engage the second valve seat.