Abstract:
Three-way valve drivable by a pump, switchable between at least two switch positions wherein a first port is selectively in fluid communication with a second port or with a third port. The three-way valve comprises a movable support and a pair of obstructing members carried by the movable support, at least one of which is responsive to the pressure applied by the pump at the first port, at least one of the movable support and obstructing members to being movable due to transitions between an off-state and an on-state of the circulation pump. The obstructing members are adapted to engage reciprocatingly the respective seats of the three-way valve. The obstructing members are capable of changing shape synchronously when the pump switches from the off-state to the on-state.
Abstract:
The present disclosure relates to a servovalve assembly comprising a pair of opposed nozzles spaced apart by a first gap. A control element positioned in the first gap (G) between the pair of opposed nozzles. Each nozzle has an outlet opening. The control element has a central control portion and two resiliently deformable end portions at opposite ends of the central control portion. The central control portion is perpendicular to a central axis (C) of each nozzle outlet opening. The control element is configured such that the two resiliently deformable end portions elastically deform when the control element is placed under tension by a force applied parallel to the central control portion, so as to move the control element in a direction parallel to the central axis (C) of each nozzle outlet opening.
Abstract:
The present invention relates to a cooling system valve (24) for an internal combustion engine cooling system (12), the internal combustion engine cooling system (12) comprising a radiator (14) and a coolant passage (16) adapted to cool at least a portion of an internal combustion engine (18), the cooling system valve (24) being adapted to be located between the radiator (14) and the coolant passage (16), as seen in an intended direction of flow from the radiator (14) to the coolant passage (16). The cooling system valve (24) is adapted to automatically assume each one of at least the following conditions: —an open condition, allowing coolant transport from the radiator (14) towards the coolant passage (16) via the cooling system valve (24), and —a closed condition, preventing coolant transport in a direction from the coolant passage (16) towards the radiator (14) via the cooling system valve (24).
Abstract:
A control apparatus for controlling a linear solenoid by controlling a driving current supplied to the linear solenoid through a feedback control. The feedback control is executed by a feedback control system having parameters that are determined in accordance with an ILQ design method. In a frequency characteristic of a gain of a transfer function representing a ratio of an output to a disturbance in the feedback control system, the gain is lower than 0[dB] throughout all frequency ranges.
Abstract:
A valve actuator device includes a supporting body, a driving shaft, and a fluid cylinder having a body connected to one side of the supporting body. The cylinder has a rod that controls rotation of a driving arm rigidly connected to the driving shaft. Linear movement of the rod is converted into rotation of the driving arm by engagement of a cam-follower pin carried by the rod within a slot formed in the driving arm. The slot is formed in an insert that constitutes an element separate from the driving arm body and that is received and held within a seat of the driving arm body. Thus, a single main body for the driving arm is provided, having a plurality of inserts for selective mounting within the seat and are differentiated from one another in the dimensions and shape of the slot and/or in the material of the insert.
Abstract:
The present disclosure relates to a servovalve assembly comprising a pair of opposed nozzles spaced apart by a first gap. A control element positioned in the first gap (G) between the pair of opposed nozzles. Each nozzle has an outlet opening. The control element has a central control portion and two resiliently deformable end portions at opposite ends of the central control portion. The central control portion is perpendicular to a central axis (C) of each nozzle outlet opening. The control element is configured such that the two resiliently deformable end portions elastically deform when the control element is placed under tension by a force applied parallel to the central control portion, so as to move the control element in a direction parallel to the central axis (C) of each nozzle outlet opening.
Abstract:
A system and method for detecting uncommanded positioning of at least one valve spool in a plurality of valve spools and for stopping fluid flow to a plurality of hydraulic actuators fluidly connected to the plurality of valve spools is disclosed. The method may comprise receiving a signal fluid pressure detected in a signal passageway, identifying whether at least one activation command is currently enabled, and stopping the flow of fluid to the plurality of hydraulic actuators if no activation command is enabled for any of the plurality of valve spools, and the signal fluid pressure when detected (1) upstream of the plurality of valve spools is greater than a first threshold or (2) downstream of the plurality of valve spools is less than a second threshold.
Abstract:
An apparatus to measure the transient response of a mass flow controller (MFC). The size of a variable orifice, upstream of the MFC, is controlled such that the pressure between the orifice and the MFC is held constant during the entire time that the MFC is going through its transient response. The known relationship between the size of the orifice and the flow through it allows a determination of the transient response of the MFC.
Abstract:
A fuel supply arrangement adapted for use with a locomotive system. The fuel supply arrangement includes a flow line to supply the fuel from a tender car to an engine car. Further, a quick disconnect coupling is provided on the flow line. A first control system is provided on the flow line configured to stop the supply of the fuel in an event of breaking of the flow line.
Abstract:
A heater assembly can be used with a gas appliance. The gas appliance can be a dual fuel appliance for use with one of a first fuel type or a second fuel type different than the first. The heater assembly can include a fuel regulator valve including a main pressure regulator to regulate the fuel pressure, at least one auxiliary pressure regulator, a first fuel source connection for connecting the first fuel type to the heater assembly, and a second fuel source connection for connecting the second fuel type to the heater assembly. The one or more auxiliary pressure regulators introduce a backline pressure to the main pressure regulator, thereby adjusting the fuel pressure to fall within a predetermined range.