Abstract:
The present disclosure relates generally to the field of static dissipative coatings. More specifically, the present disclosure relates to the methods of making static dissipative, preferably non-chromium-containing, coatings comprising carbon nanotubes, the coatings themselves, and structures comprising such coatings.
Abstract:
The present disclosure is directed to conductive, translucent water-borne conductive coatings comprising a water-borne lubricant coating base material, an amount of PEDOT:PSS solution, and an amount of metal-containing nanowire, methods for making the same, and articles coated with such coatings.
Abstract:
The present disclosure relates generally to the field of static dissipative coatings. More specifically, the present disclosure relates to the methods of making static dissipative, preferably non-chromium-containing, coatings comprising carbon nanotubes, the coatings themselves, and structures comprising such coatings.
Abstract:
The present disclosure relates generally to the field of static dissipative coatings. More specifically, the present disclosure relates to the methods of making static dissipative, preferably non-chromium-containing, coatings comprising carbon nanotubes, the coatings themselves, and structures comprising such coatings.
Abstract:
The present disclosure is directed to conductive, translucent water-borne conductive coatings comprising a water-borne lubricant coating base material, an amount of PEDOT:PSS solution, and an amount of metal-containing nanowire, methods for making the same, and articles coated with such coatings.
Abstract:
The present disclosure is directed to conductive, translucent water-borne conductive coatings comprising a water-borne lubricant coating base material, an amount of PEDOT:PSS solution, and an amount of metal-containing nanowire, methods for making the same, and articles coated with such coatings.
Abstract:
Methods include applying an electric charge to a coating material that includes carbon nanotubes and a carrier, such as paint, and depositing the electrically charged coating material to a substrate. In some methods, the applying includes utilizing an electrostatic sprayer. In some methods, the substrate is isolated from ground during the depositing. In some methods, the substrate is an insulator. Some methods result in regions of carbon nanotubes that are substantially longitudinally aligned after the depositing. Coated substrates may include a coating with carbon nanotubes that are substantially longitudinally aligned and in some examples that are arranged in a zig-zag pattern. Aircraft, spacecraft, land vehicles, marine vehicles, wind turbines, and apparatuses that may be susceptible to lightning strikes or other types of electromagnetic effects and that include a coated substrate also are disclosed.
Abstract:
The present disclosure relates generally to the field of static dissipative coatings. More specifically, the present disclosure relates to the methods of making static dissipative, preferably non-chromium-containing, coatings comprising carbon nanotubes, the coatings themselves, and structures comprising such coatings.
Abstract:
The present disclosure is directed to conductive, translucent water-borne conductive coatings comprising a water-borne lubricant coating base material, an amount of PEDOT:PSS solution, and an amount of metal-containing nanowire, methods for making the same, and articles coated with such coatings.