Abstract:
A time-resolved fluorescence imaging (TRFI) system that images a target medium without lifetime fitting. Instead of extracting the lifetime precisely, the system images the fluorophore distribution to allow for a simple and accurate method to obtain the fluorescence image without lifetime-extraction for time-resolved fluorescence imaging. An illumination source circuit for TRFI is also disclosed that shapes the excitation pulse. In one embodiment, the illumination source comprises an LED and stub line configured for generating a linear decay profile.
Abstract:
Systems and methods for biocompatible tissue characterization using Raman imaging are provided. The systems and methods utilize Raman systems tuned to monitor spectral wavelengths characteristic of target types of tissue to monitor constituents of that tissue in biological systems and samples. The Raman systems may be tuned to monitor the Raman signature for the formation of the chemical bonds that join phosphorous and oxygen (PO) atoms, such that the formation of hydroxyapatite may be monitored and used to determine the presence of bone formation in a sample, such as, for example, biological tissue.
Abstract:
A time-resolved fluorescence imaging (TRFI) system that images a target medium without lifetime fitting. Instead of extracting the lifetime precisely, the system images the fluorophore distribution to allow for a simple and accurate method to obtain the fluorescence image without lifetime-extraction for time-resolved fluorescence imaging. An illumination source circuit for TRFI is also disclosed that shapes the excitation pulse. In one embodiment, the illumination source comprises an LED and stub line configured for generating a linear decay profile.