Long Term Active Learning from Large Continually Changing Data Sets
    6.
    发明申请
    Long Term Active Learning from Large Continually Changing Data Sets 审中-公开
    长期主动学习从大量不断变化的数据集

    公开(公告)号:US20160162786A1

    公开(公告)日:2016-06-09

    申请号:US15007489

    申请日:2016-01-27

    CPC classification number: G06N5/022 G06N7/005 G06N20/00 G16H50/20 G16H50/50

    Abstract: Methods and systems are disclosed for autonomously building a predictive model of outcomes. A most-predictive set of signals Sk is identified out of a set of signals s1, s2, . . . , sD for each of one or more outcomes ok. A set of probabilistic predictive models ôk=Mk(Sk) is autonomously learned, where ôk is a prediction of outcome ok derived from the model Mk that uses as inputs values obtained from the set of signals Sk. The step of autonomously learning is repeated incrementally from data that contains examples of values of signals s1, s2, . . . , sD and corresponding outcomes o1, o2, . . . , oK. Various embodiments are also disclosed that apply predictive models to various physiological events and to autonomous robotic navigation.

    Abstract translation: 公开了用于自主建立结果预测模型的方法和系统。 从信号集合s1,s2,...中识别最可预测的信号集合Sk。 。 。 ,每个一个或多个结果的sD都可以。 一组概率预测模型ôk= Mk(Sk)是自主学习的,其中ôk是从使用从信号集合Sk获得的输入值的模型Mk导出的结果确定的预测。 自动学习的步骤从包含信号s1,s2,...的值的例子的数据逐渐重复。 。 。 ,sD和相应的结果o1,o2,。 。 。 , 好。 还公开了各种实施例,其将预测模型应用于各种生理事件和自主机器人导航。

Patent Agency Ranking