Controlling battery output power to prevent vehicle theft

    公开(公告)号:US11479207B2

    公开(公告)日:2022-10-25

    申请号:US16823647

    申请日:2020-03-19

    Abstract: A method is presented for controlling power output by a battery in a vehicle. The method includes: measuring voltage of the battery during a sequence of vehicle events to form a time series, where each vehicle event is powered by the battery; constructing an unknown fingerprint from the voltage measurements made during the sequence of vehicle events, where the unknown fingerprint is indicative of a sequence of vehicle events; comparing the unknown fingerprint to the at least one fingerprint; receiving a start signal, where the start signal is a request to start the engine of the vehicle; and, in response to receiving the start signal and based on the comparison of the unknown fingerprint to the at least one fingerprint, outputting electric power from the battery to an electric starter motor of the vehicle.

    Method to charge lithium-ion batteries with user, cell and temperature awareness

    公开(公告)号:US11437829B2

    公开(公告)日:2022-09-06

    申请号:US15335556

    申请日:2016-10-27

    Abstract: Lithium-ion cells are widely used in various platforms, such as electric vehicles (EVs) and mobile devices. Complete and fast charging of cells has always been the goal for sustainable system operation. However, fast charging is not always the best solution, especially in view of a new finding that cells need to rest/relax after being charged with high current to avoid accelerated capacity fading. A user aware charging algorithm is proposed which maximizes the charged capacity within a user-specified available charging time (i.e., user-awareness) while ensuring enough relaxation (i.e., cell-awareness) and keeping cell temperature below a safe level.

    User aware charging algorithm that reduces battery fading

    公开(公告)号:US11258285B2

    公开(公告)日:2022-02-22

    申请号:US15984843

    申请日:2018-05-21

    Abstract: An user-interactive charging paradigm is presented that tailors the device charging to the user's real-time needs. The core of approach is a relaxation-aware charging algorithm that maximizes the charged capacity within the user's available time and slows down the battery's capacity fading. The approach also integrates relaxation-aware charging algorithm existing fast charging algorithms via a user-interactive interface, allowing users to choose a charging method based on their real-time needs. The relaxation-aware charging algorithm is shown to slow down the battery fading by over 36% on average, and up to 60% in extreme cases, when compared with existing fast charging solutions. Such fading slowdown translates to, for instance, an up to 2-hour extension of the LTE time for a Nexus 5X phone after 2-year usage, revealed by a trace-driven analysis based on 976 charging cases collected from 7 users over 3 months.

    Method to estimate battery health for mobile devices based on relaxing voltages

    公开(公告)号:US11215675B2

    公开(公告)日:2022-01-04

    申请号:US16605893

    申请日:2018-04-17

    Abstract: Mobile devices are only as useful as their battery lasts. Unfortunately, the operation and life of a mobile device's battery degrade over time and usage. The state-of-health (SoH) of batteries quantifies their degradation, but mobile devices' support for its estimation is very poor due mainly to the limited hardware and dynamic usage patterns, causing various problems such as shutting off the devices unexpectedly. To remedy this lack of support, a low-cost user-level SoH estimation service is developed for mobile devices based only on their battery voltage, which is already available on all commodity mobile devices. The design of the estimation service is inspired by an empirical observation that the relaxing voltages of a device battery fingerprint its SoH, and is steered by extensive measurements with 13 batteries used for various devices, such as Nexus 6P, Nexus 5X, Xperia Z5, Galaxy S3, iPhone 6 Plus, etc.

Patent Agency Ranking