Abstract:
A liquid crystal display according to an embodiment includes a first light-emitting device that emits short-wavelength light of a wavelength 360 nm to 420 nm and a second light-emitting device that emits visible light. Electrodes of the liquid crystal display includes a light-guiding electrode that drives a liquid crystal contained in the liquid crystal layer to emit the short-wavelength light and a pixel electrode that drives the liquid crystal contained in the liquid crystal layer to emit the visible light. The photoreceptors are each a phototransistor including a transparent channel layer containing two metallic oxides or more from gallium, indium, zinc, hafnium, tin, and yttrium. The photoreceptors include a first photoreceptor overlaps with the blue filter in the plan view and a second photoreceptor overlaps with the green filter, the red filter, or the black matrix in the plan view.
Abstract:
Since the gate electrode (1) and the capacitor electrode (2) are made into a double layer structure, the first layers (1a, 2a) in contact with the substrate (0) are made of ITO, and the second layers (1b, 2b) in contact with the gate insulating layer (3) are made of an metallic oxide layer, it becomes possible to form the gate electrode (1) and the capacitor electrode (2) having high optical transparency and high conductivity. Therefore, it becomes possible to improve the optical transparency of a thin film transistor and to improve the display performance of an image displaying apparatus for which the thin film transistor is used by using the above-described gate electrode (1) and the above-described capacitor electrode (2).
Abstract:
Since the gate electrode (1) and the capacitor electrode (2) are made into a double layer structure, the first layers (1a, 2a) in contact with the substrate (0) are made of ITO, and the second layers (1b, 2b) in contact with the gate insulating layer (3) are made of an metallic oxide layer, it becomes possible to form the gate electrode (1) and the capacitor electrode (2) having high optical transparency and high conductivity. Therefore, it becomes possible to improve the optical transparency of a thin film transistor and to improve the display performance of an image displaying apparatus for which the thin film transistor is used by using the above-described gate electrode (1) and the above-described capacitor electrode (2).
Abstract:
A method for manufacturing a thin film transistor includes a first process of forming a gate electrode on a substrate; a second process of forming a gate insulation film so as to cover the gate electrode; a third process of forming a source electrode and a drain electrode on the gate insulation film; a fourth process of forming a semiconductor layer connected to the source electrode and the drain electrode; a fifth process of forming a protection film so as to overlap a portion of the source electrode and the drain electrode immediately above the semiconductor layer; and a sixth process of patterning the semiconductor layer using the protection film as a mask.
Abstract:
A liquid crystal display according to an embodiment includes a first light-emitting device that emits short-wavelength light of a wavelength 360 nm to 420 nm and a second light-emitting device that emits visible light. Electrodes of the liquid crystal display includes a light-guiding electrode that drives a liquid crystal contained in the liquid crystal layer to emit the short-wavelength light and a pixel electrode that drives the liquid crystal contained in the liquid crystal layer to emit the visible light. The photoreceptors are each a phototransistor including a transparent channel layer containing two metallic oxides or more from gallium, indium, zinc, hafnium, tin, and yttrium. The photoreceptors include a first photoreceptor overlaps with the blue filter in the plan view and a second photoreceptor overlaps with the green filter, the red filter, or the black matrix in the plan view.