Abstract:
Provided is a precursor for lithographic printing having excellent printing durability and ink repellency as well as high reproducibility of the high definition images. The precursor for lithographic printing includes, at least a heat sensitive layer and an ink repellent layer wherein the ink repellent layer has an elastic modulus of the plate surface under the surface load of 14000 N/m2 of at least 25 MPa and up to 35 MPa.
Abstract:
The present invention pertains to a fluorescent-material-containing resin sheet to be used as a light-emitting element. The present invention addresses the problem of obtaining a fluorescent-material-containing resin sheet which exhibits excellent formability, favorable light resistance, and favorable heat resistance, and when used as a light-emitting element, has high brightness and low variation in light emission between chips. As a means of solving this problem, this fluorescent-material-containing resin sheet contains a fluorescent material, a resin, and metal oxide particles (I) having an average particle diameter of 10-200 nm, wherein the amount of the fluorescent material contained therein is 250-1000 parts by mass per 100 parts by mass of the resin. Preferably, this sheet also contains metal oxide particles (II) having an average particle diameter of 300-1000 nm, and as a separate embodiment, preferably contains silicone fine particles.
Abstract:
The present invention relates to a printing plate including a first silicone layer and a second silicone layer which have different ink acceptabilities on a support. An object of the present invention is to provide a printing plate that dispenses with a development step and that has excellent image reproducibility, ink repellency, ink acceptability, and printing durability.
Abstract:
The present invention pertains to a fluorescent-material-containing resin sheet to be used as a light-emitting element. The present invention addresses the problem of obtaining a fluorescent-material-containing resin sheet which exhibits excellent formability, favorable light resistance, and favorable heat resistance, and when used as a light-emitting element, has high brightness and low variation in light emission between chips. As a means of solving this problem, this fluorescent-material-containing resin sheet contains a fluorescent material, a resin, and metal oxide particles (I) having an average particle diameter of 10-200 nm, wherein the amount of the fluorescent material contained therein is 250-1000 parts by mass per 100 parts by mass of the resin. Preferably, this sheet also contains metal oxide particles (II) having an average particle diameter of 300-1000 nm, and as a separate embodiment, preferably contains silicone fine particles.
Abstract:
To provide is a manufacturing method for obtaining printed material in which, in lithographic printing, a printed part where multiple colors are superimposed on each other has a high gloss, and also a lithographic printing ink set. The method for manufacturing printed material according to the present invention includes a step of coating at least black ink for lithographic printing, cyan ink for lithographic printing, magenta ink for lithographic printing, and yellow ink for lithographic printing on a substrate, in which a difference in surface tension between the inks to be coated on a substrate is at most equal to 3.5 mN/m. The lithographic printing ink set according to the present invention is a lithographic printing ink set including at least black ink, cyan ink, magenta ink, and yellow ink, in which a difference in surface tension between the inks included in the lithographic printing ink set is at most equal to 3.5 mN/m.
Abstract:
Provided are a method for producing a printed matter and a printing machine which suppress the decrease of transferability and improve adhesiveness between ink and a film substrate when ink is printed on the film substrate. The method for producing a printed matter of the present invention is a method for producing a printed matter by printing ink on a film, which uses a film having a nitrogen element concentration of 0.5 to 10.0 atom % in the film surface, and includes irradiating with an active energy ray after printing.
Abstract:
Provided is a lithographic ink having superior surface staining resistance and fluidity. Also provided is a method for manufacturing a printed material using the lithographic ink. The lithographic ink has all of a viscosity (A) at a rotational speed of 0.5 rpm, a viscosity (B) at a rotational speed of 20 rpm, and a viscosity (C) at a rotational speed of 50 rpm of 5 Pa·s or more and 100 Pa·s or less, the viscosities (A), (B), and (C) being measured by using a cone-plate rotating viscometer at 25° C., and has a viscosity ratio (C)/(B) of 0.8 or more and 1.0 or less.
Abstract:
The present invention aims to provide a method of producing a printed matter that shows suppressed scumming in planography. A method of producing a printed matter, the method including the steps of: allowing a dampening water to adhere to a hydrophilic layer of a planographic printing plate having at least the hydrophilic layer and a heat sensitive layer; allowing an ink to adhere to the heat sensitive layer; and transferring the ink adhering to the heat sensitive layer to an object to be printed; wherein the pH (A) of the ink and the pH (B) of the dampening water are both from 1 to 6.5.