Abstract:
The method comprises flying at least a probe carrier flying vehicle above a dropping area on the ground, the probe carrier flying vehicle carrying probes and a launcher, configured to separate each probe from the probe carrier flying vehicle; activating the launcher to separate at least one of the probes from the probe carrier flying vehicle above the dropping area; falling of the probe from the flying vehicle in the ground of the dropping area; at least partial insertion of the probe in the ground of the dropping area. When the probe carrier flying vehicle is located above a target dropping area, before activating the launcher, the method comprises determining a vegetation information at the target dropping area using a flying vegetation detector.
Abstract:
The invention concerns a method for evaluating a geophysical survey acquisition geometry over a region of interest. The method comprises determining a location of a plurality of base camps in respect of a determined minimal surface density of base camps, determining a first set of locations of a plurality of receivers in respect of a determined minimal surface density of receivers, generating a first synthetic geophysical dataset based on the first geophysical survey acquisition geometry, processing the first synthetic geophysical dataset for obtaining a first simulated image of the subsurface of the region of interest using a geophysical processing algorithm and an a priori subsurface model, and calculating a first objective function dependent of at least a first quality index of the first simulated image of the subsurface of the region of interest.
Abstract:
The method comprises providing at least one seismic source in a seismic source area and providing a plurality of seismic receivers in said seismic source area, said method comprising measuring a first type of ground vibrations induced in a subsurface of the area of interest by the at least one seismic source with the plurality of seismic receivers. The method further comprises measuring with the plurality of seismic receivers at least one second type of ground vibrations induced by a mechanical source different from the or from each seismic source and analyzing the second type of ground vibrations to determine at least one information among: a physical parameter of the subsurface and/or, a presence of human and/or an animal and/or a vehicle.
Abstract:
In order to acquire seismic data relative to an underground area beneath the sea, seismic waves are emitted in an emission direction forming an angle θ with the vertical using, at least one seismic source submerged at a depth d. A seismic signal is collected following the emission of the seismic waves and the propagation of same underground with a view to processing same. In one embodiment of the method, in order to overcome the major problem linked to the depth limit encountered by seismic sources, the processing of the seismic signal comprises a summation of a plurality of terms including the seismic signal and the seismic signal delayed by ΔT=2d·cos θ/V, in which V is the speed of propagation of the seismic waves in water.
Abstract translation:为了获取相对于海底下地下区域的地震资料,地震波在形成角度的发射方向发射; 在垂直使用时,至少一个地震源淹没在深度d处。 在地震波的发射和地下的传播之后收集地震信号,以便处理相同的地震信号。 在该方法的一个实施例中,为了克服与地震源所遇到的深度限制有关的主要问题,地震信号的处理包括包括地震信号和地震信号延迟了&Dgr的多个项的总和; T = 2d·cos&Thetas; / V,其中V是地震波在水中的传播速度。
Abstract:
In order to acquire seismic data relative to an underground area beneath the sea, seismic waves are emitted in an emission direction forming an angle θ with the vertical using at least one seismic source submerged at a depth d. A seismic signal is collected following the emission of the seismic waves and the propagation of same underground with a view to processing same. In one embodiment of the method, in order to overcome the major problem linked to the depth limit encountered by seismic sources, the processing of the seismic signal comprises a summation of a plurality of terms including the seismic signal and the seismic signal delayed by ΔT=2d·cos θ/V, in which V is the speed of propagation of the seismic waves in water.