Abstract:
In a method for controlling characteristics of a ceramic carbon composite, an interfacial layer of a ceramic is formed throughout a carbonaceous material and the interfacial layer of the ceramic has a continuous three-dimensional network throughout the carbonaceous material; and characteristics of a ceramic carbon composite are controlled. In a method, an interfacial layer (3) of a ceramic is formed throughout a carbonaceous material (2) and the interfacial layer (3) of the ceramic has a continuous three-dimensional network throughout the carbonaceous material (2), the characteristics of the ceramic carbon composite (1) is controlled by specifying and selecting at least one of a shape, a hardness, and a degree of graphitization of the carbonaceous material (2). Thus, the ceramic carbon composite (1) having the characteristics controlled without depending on the control of manufacturing conditions can be obtained.
Abstract:
Provided are a metal-carbon composite material having good workability and a high carbon content and a method for producing the same. The metal-carbon composite material (1) includes a continuous metallic phase (3) and carbon particles (2) dispersed in the metallic phase (3). The carbon particle (2) includes a carbon base material and a ceramic layer covering the carbon base material.
Abstract:
A joined material and a method of manufacturing the joined material are provided which enable a metal layer and a carbon material layer to be easily joined to each other while making the thickness of the metal layer larger and which can inhibit failure. A joined material includes a CFC layer (3) and a tungsten layer (4) that are joined to each other. A sintered tungsten carbide layer (5), a mixed layer (6) of SiC and WC, and SiC and WC (7) that have been sintered while intruding into the CFC layer (3), are formed between the CFC layer (3) and the tungsten layer (4), and these layers (3, 4, 5, 6, and 7) are joined to each other by sintering.
Abstract:
A joined material and a method of manufacturing the joined material are provided which enable a metal layer and a carbon material layer to be easily joined to each other while making the thickness of the metal layer larger and which can inhibit failure.A joined material includes a CFC layer (3) and a tungsten layer (4) that are joined to each other. A sintered tungsten carbide layer (5), a mixed layer (6) of SiC and WC, and SiC and WC (7) that have been sintered while intruding into the CFC layer (3), are formed between the CFC layer (3) and the tungsten layer (4), and these layers (3, 4, 5, 6, and 7) are joined to each other by sintering.