Abstract:
In an EHC, a ratio of a heat capacity of the second catalyst body with respect to a heat capacity of the first catalyst body is made within a range of 0.67-1.5. A ratio of an amount of coat of an OSC material in the second catalyst body with respect to an amount of coat of an OSC material in the first catalyst body is made larger than the ratio of the heat capacity of the second catalyst body with respect to the heat capacity of the first catalyst body. A ratio of an amount of support of a noble metal in the second catalyst body with respect to an amount of support of a noble metal in the first catalyst body is made smaller than the ratio of the heat capacity of the second catalyst body with respect to the heat capacity of the first catalyst body.
Abstract:
According to one aspect of the present invention, there is provided a control device for an internal combustion engine, in which an electric heating catalyst (EHC) having a catalyst support generating heat by energizing is provided to an exhaust passage. The control device includes a control unit configured to energize the support in the case where a rapid change in intake air flow is detected based on an intake air flow of the internal combustion engine or a correlation value of the intake air flow, so as to suppress any occurrence of a crack caused by an increase in difference in temperature between predetermined portions at the support during the rapid change in intake air flow.
Abstract:
A control system includes an electrical heating catalyzer, a measuring device and an electronic control unit. The measuring device measures an insulation resistance between a catalyst carrier and case of the electrical heating catalyzer. The electronic control unit determines that the electrical heating catalyzer has a failure when a variation width of the insulation resistance is smaller than or equal to a set value in a historical variation in the insulation resistance measured by the measuring device.