Abstract:
A vehicle allocation device allocates a vehicle in response to a vehicle allocation request from a terminal of a user, and includes a vehicle selector configured to, when acquiring the vehicle allocation request, select a vehicle having a relatively large degree of progress in learning of a relation between input and output of a parameter depending on an area to be traveled by the user from a plurality of vehicles learning a relation between input and output of a parameter depending on a predetermined area, and output a vehicle allocation instruction to the selected vehicle.
Abstract:
A vehicle allocation device includes a processor including hardware, the processor being configured to: determine, for each vehicle, a necessity of suppressing lowering of performance of an internal combustion engine based on vehicle information corresponding to the vehicle; determine a reservation as a first reservation when reservation information corresponding to the reservation of renting the vehicle satisfies a first condition under which suppressing of lowering of the performance is expected; and allocate the vehicle to the reservation based on the reservation information, wherein the processor is configured to allocate, in a case where the reservation is the first reservation, the vehicle satisfying a second condition indicating a high necessity of the suppression of lowering of the performance or the vehicle having a higher necessity of the suppression of lowering of the performance than the other vehicle to the reservation.
Abstract:
A learning use data set showing relationships among an engine speed, an engine load rate, an air-fuel ratio of the engine, an ignition timing of the engine, an HC or CO concentration of exhaust gas flowing into an exhaust purification catalyst and a temperature of the exhaust purification catalyst is acquired. The acquired engine speed, engine load rate, air-fuel ratio of the engine, ignition timing of the engine, and HC or CO concentration of the exhaust gas flowing into the exhaust purification catalyst are used as input parameters of a neural network and the acquired temperature of the exhaust purification catalyst is used as training data to learn a weight of the neural network. The learned neural network is used to estimate the temperature of the exhaust purification catalyst.
Abstract:
A vehicle allocation device for allocating a vehicle in response to a vehicle allocation request from a terminal of a user includes a vehicle selection unit configured to select, from a plurality of vehicles learning a relationship between input parameters and an output parameter related to traveling, a vehicle having relatively large learning progress in the relationship between the input parameters and the output parameter, and output a vehicle allocation instruction to the selected vehicle in a case where the vehicle allocation request is received.
Abstract:
A learning use data set showing relationships among an engine speed, an engine load rate, an air-fuel ratio of the engine, an ignition timing of the engine, an HC or CO concentration of exhaust gas flowing into an exhaust purification catalyst and a temperature of the exhaust purification catalyst is acquired. The acquired engine speed, engine load rate, air-fuel ratio of the engine, ignition timing of the engine, and HC or CO concentration of the exhaust gas flowing into the exhaust purification catalyst are used as input parameters of a neural network and the acquired temperature of the exhaust purification catalyst is used as training data to learn a weight of the neural network. The learned neural network is used to estimate the temperature of the exhaust purification catalyst.
Abstract:
According to one aspect of the present invention, there is provided a control device for an internal combustion engine, in which an electric heating catalyst (EHC) having a catalyst support generating heat by energizing is provided to an exhaust passage. The control device includes a control unit configured to energize the support in the case where a rapid change in intake air flow is detected based on an intake air flow of the internal combustion engine or a correlation value of the intake air flow, so as to suppress any occurrence of a crack caused by an increase in difference in temperature between predetermined portions at the support during the rapid change in intake air flow.
Abstract:
A control system includes an electrical heating catalyzer, a measuring device and an electronic control unit. The measuring device measures an insulation resistance between a catalyst carrier and case of the electrical heating catalyzer. The electronic control unit determines that the electrical heating catalyzer has a failure when a variation width of the insulation resistance is smaller than or equal to a set value in a historical variation in the insulation resistance measured by the measuring device.