Abstract:
A sulfide solid electrolyte is capable of suppressing a decrease in Li ion conductivity due to moisture. A sulfide solid electrolyte includes a Li element, a P element, a S element and an O element, and having a granular shape, and including a crystal portion oriented along the granular shape, on an inner surface of the sulfide solid electrolyte.
Abstract:
A main object of the present disclosure is to provide a sulfide solid electrolyte material with favorable Li ion conductivity. To achieve the above object, the present disclosure provides a sulfide solid electrolyte material comprising a composition of Li(4+x)AlxSi(1−x)S4 (0
Abstract:
(Problem to be Solved) A solid electrolyte material with favorable ion conductivity is demanded from the viewpoint of the higher output of a battery. The present invention was made in view of the above-described problems, with an object of providing a sulfide solid electrolyte material with favorable Li ion conductivity and providing a lithium battery including the sulfide solid electrolyte material. (Solution) There are provided: a solid electrolyte including a sulfide-based solid electrolyte represented by a composition formula: (Li2S)x(MS2)y(P2S5)z, in which M is at least one selected from the group consisting of Ge, Sb, Si, Sn, B, Al, Ga, In, Zr, V, and Nb, and 0.53≤x≤0.74, 0.13≤y≤0.37, 0.04≤z≤0.15, and x+y+z=1 are satisfied; and a lithium battery including the solid electrolyte.
Abstract:
A main object of the present disclosure is to provide a sulfide solid electrolyte with excellent water resistance. The present disclosure achieves the object by providing a sulfide solid electrolyte including a LGPS type crystal phase, and containing Li, Ge, P, and S, wherein: when an X-ray photoelectron spectroscopy measurement is conducted to a surface of the sulfide solid electrolyte, a proportion of Ge2+ with respect to total amount of Ge is 20% or more.
Abstract:
(Problem to be Solved) The present invention was made in view of the above-described problems, with an object of providing a Li—P—S-based sulfide solid electrolyte material with both excellent electrochemical stability and a high lithium ion conductivity, providing a method of producing the Li—P—S-based sulfide solid electrolyte material, and providing a lithium battery including the sulfide solid electrolyte material.(Solution) There is provided a sulfide solid electrolyte material including a Li element, a P element, and a S element and having peaks at positions of 2θ=17.90±0.20, 29.0±0.50, and 29.75±0.25′ in powder X-ray diffraction measurement using a Cu-Kαray having an X-ray wavelength of 1.5418 Å, in which assuming that the diffraction intensity of the peak at 2θ=17.90±0.20 is IA and the diffraction intensity of the peak at 2θ=18.50±0.20 is IB, a value of IB/IA is less than 0.50.
Abstract:
The present invention aims to provide a sulfide solid electrolyte material with favorable ion conductivity, in which charge and discharge efficiency may be inhibited from decreasing. The object is attained by providing a sulfide solid electrolyte material, including: a Li element; a P element; and a S element, characterized in that the material has a peak at a position of 2θ=30.21°±0.50° in X-ray diffraction measurement using a CuKα ray, and the sulfide solid electrolyte material does not substantially include a metallic element belonging to the third group to the sixteenth group.
Abstract:
The problem is to provide a sulfide solid electrolyte material with favorable Li ion conductivity in a low-temperature environment. The problem is overcome by providing a sulfide solid electrolyte material comprising an M1 element (such as an Li element and an Mg element), an M2 element (such as a Ge element and a P element) and a S element, wherein the sulfide solid electrolyte material has a peak at a position of 2θ=29.58°±0.50° in X-ray diffraction measurement using a CuKα ray, does not have a peak at a position of 2θ=27.33°±0.50° or slightly having the peak, and a substituted amount δ(%) of the divalent element in the M1 element is in such a range that the sulfide solid electrolyte material exhibits higher Li ion conductance at 0° C. than the case of δ=0.
Abstract:
The problem of the present invention is to provide a sulfide solid electrolyte material with favorable reduction resistance. The present invention solves the problem by providing a sulfide solid electrolyte material having a peak at a position of 2θ=30.26°±1.00° in X-ray diffraction measurement using a CuKα ray, and having a composition of Li(4−x−4y)Si(1−x+y)P(x)S(4−2a−z)O(2a+z) (a=1−x+y, 0.65≤x≤0.75, −0.025≤y≤0.1, −0.2≤z≤0).
Abstract:
A sulfide solid electrolyte material contains element M1, element M2, element M3 and element S. Element M1 is at least one type selected from the group consisting of Li, Na, K, Mg Ca and Zn, and contains at least one of Li and Na. Element M2 is at least one type selected from the group consisting of P, Sb, Si, Ge, Sn, B, Al, Ga, In, Ti, Zr and V, and contains at least P.
Abstract:
In order to improve the stability of an electrolyte, an object of the present disclosure is to develop, among the sulfide solid electrolytes of Li—P—S—O based containing no metal element other than lithium, a new solid electrolyte having a possibility to have high ion conductivity and a method for producing for obtaining the same easily. The present disclosure achieves the object by providing a solid electrolyte material including a sulfide composition represented by a composition formula Li4-4y-xP4+1+y-xP5+xS4-zOz (Li4-4y-xP1+yS4-zOz), wherein 0.6≤x