Abstract:
The problem of the present invention is to provide a sulfide solid electrolyte material with favorable reduction resistance. The present invention solves the problem by providing a sulfide solid electrolyte material having a peak at a position of 2θ=30.26°±1.00° in X-ray diffraction measurement using a CuKα ray, and having a composition of Li(4−x−4y)Si(1−x+y)P(x)S(4−2a−z)O(2a+z) (a=1−x+y, 0.65≤x≤0.75, −0.025≤y≤0.1, −0.2≤z≤0).
Abstract:
The present invention aims to provide a sulfide solid electrolyte material with favorable ion conductivity, in which charge and discharge efficiency may be inhibited from decreasing. The object is attained by providing a sulfide solid electrolyte material, including: a Li element; a P element; and a S element, characterized in that the material has a peak at a position of 2θ=30.21°±0.50° in X-ray diffraction measurement using a CuKα ray, and the sulfide solid electrolyte material does not substantially include a metallic element belonging to the third group to the sixteenth group.
Abstract:
The problem is to provide a sulfide solid electrolyte material with favorable Li ion conductivity in a low-temperature environment. The problem is overcome by providing a sulfide solid electrolyte material comprising an M1 element (such as an Li element and an Mg element), an M2 element (such as a Ge element and a P element) and a S element, wherein the sulfide solid electrolyte material has a peak at a position of 2θ=29.58°±0.50° in X-ray diffraction measurement using a CuKα ray, does not have a peak at a position of 2θ=27.33°±0.50° or slightly having the peak, and a substituted amount δ(%) of the divalent element in the M1 element is in such a range that the sulfide solid electrolyte material exhibits higher Li ion conductance at 0° C. than the case of δ=0.
Abstract:
A sulfide solid electrolyte material has favorable ion conductivity and resistance to reduction. The sulfide solid electrolyte material includes a peak at a position of 2θ=29.86°±1.00° in X-ray diffraction measurement using a CuKα ray, and a composition of Li2y+3PS4 (0.1≦y≦0.175).
Abstract:
A sulfide solid electrolyte material includes Li, K, Si, P and S elements; a peak at 2θ=29.58°±0.50° and not having a peak at a position of 2θ=27.33°±0.50° in X-ray diffraction measurement using a CuKα ray, or when a diffraction intensity at the peak of 2θ=29.58°±0.50° is regarded as IA and a diffraction intensity at the peak of 2θ=27.33°±0.50° is regarded as IB having a peak at the position of 2θ=27.33°±0.50°, a value of IB/IA is less than 1; a P element molar fraction (P/(Si+P)) to a Si element total and the P element satisfies 0.5≦P/(Si+P)≦0.7, and a K element molar fraction (K/(Li+K)) to a Li element total and the K element satisfies 0
Abstract:
The main object of the present invention is to provide a sulfide solid electrolyte material with high Li ion conductivity. The present invention solves the problem by providing a sulfide solid electrolyte material comprising an ion conductor with an ortho-composition, and LiI, characterized in that the sulfide solid electrolyte material is glass with a glass transition point.
Abstract:
A sulfide solid electrolyte material with favorable ion conductivity and high reduction resistance. The object is attained by providing sulfide solid electrolyte material comprising: Li element; Ge element; P element; and S element, wherein the sulfide solid electrolyte material peaks at a position of 2θ=29.58°±0.50° in X-ray diffraction measurement using CuKα ray, the sulfide solid electrolyte material does not peak at a position of 2θ=27.33°±0.50° in X-ray diffraction measurement using CuKα ray or when diffraction intensity at the peak of 2θ=29.58°±0.50° is regarded as IA and diffraction intensity at the peak of 2θ=27.33°±0.50° is regarded as IB, a value of IB/IA is less than 1.0, and part of the P element in a crystal phase peaking at the position of 2θ=29.58°±0.50° is substituted with a B element.
Abstract:
Sulfide solid electrolyte material with favorable ion conductivity, wherein charge and discharge efficiency is inhibited from decreasing. Solves problem by providing a sulfide solid electrolyte material including a Li element, Si element, P element, S element and O element, having peak at position of 2θ=29.58°±0.50° in X-ray diffraction measurement using CuKα ray, wherein sulfide solid electrolyte material does not have peak at position of 2θ=27.33°±0.50° in X-ray diffraction measurement using CuKα ray, or in case of having peak at position of 2θ=27.33°±0.50°, value of IB/IA is 1 or less when diffraction intensity at peak of 2θ=29.58°±0.50° is regarded as IA and diffraction intensity at peak of 2θ=27.33°±0.50° is regarded as IB; and wherein molar fraction of O element to total of S element and O element is larger than 0.2.
Abstract:
A sulfide solid electrolyte material with favorable reduction-resistance has a second structural part formed to cover a plurality of first structural parts, a first ion conductor composing the first structural part has a specific crystal phase with favorable ion conductivity, and a weight ratio y of an Me element to a P element in the second structural part is less than 0.72.
Abstract:
Provided is an all solid state battery system with a high energy density. The all solid state battery system comprises an all solid state battery, and a discharging control unit that controls discharging of the all solid state battery, a cathode active material layer contains a cathode active material particle, and a sulfide solid electrolyte particle, and a ratio (T/t) of an actual thickness “T” of the cathode active material layer to an effective thickness “t” of the cathode active material layer which is calculated by the following Expression satisfies a relationship of 0.01≦T/t≦0.15; t=V/i×κ′ (in which, V represents an operation voltage width (V), i represents a current density (mA/cm2) during discharging, and κ′ represents effective Li ion conductivity (S/cm) of the cathode active material layer)
Abstract translation:提供了具有高能量密度的全固态电池系统。 全固态电池系统包括全固态电池和控制全固态电池放电的放电控制单元,阴极活性材料层含有阴极活性材料颗粒和硫化物固体电解质颗粒, 阴极活性物质层的实际厚度“T”与通过下式计算出的阴极活性物质层的有效厚度“t”的比(T / t)满足0.01< nlE; T / t≦̸ 0.15 ; t = V / i×&kgr;'(其中,V表示工作电压宽度(V),i表示放电期间的电流密度(mA / cm 2),&kgr;'表示有效的Li离子传导率(S / cm) 的正极活性物质层)