摘要:
The present invention relates to an OFA having a high signal gain, easily manufactured, having a high mechanical strength, having a small splice loss with respect to other optical fibers, and rarely encountering the occurrence of noise at a signal wavelength. The OFA according to the present invention has a function of amplifying signals propagating therethroug by pumping light supplied thereto, and comprises, at least, a core region, an inner cladding region provided on the periphery of the core region, an outer cladding region provided on the periphery of the inner cladding region, and one or more node coupling gratings. An element for signal amplification is added to at least the core region. The core region has a structure ensuring a core mode with respect to the signals, while the inner cladding region has a structure ensuring a multi-mode with respect to the pumping light. Each of the mode coupling gratings passes core mode signals therethrough, and induces a mode coupling between the inner cladding mode and the core mode with respect to the pumping light.
摘要:
The present invention relates to an optical I/O module and light-reflecting device comprising a structure excellent in expandability having a high degree of freedom in designing. The optical I/O module according to the present invention comprises a directional coupler having, at least, input and output ports for constituting a part of a transmission line and an intermediate port for constituting a branch; and a light-reflecting device, optically connected to the intermediate port, for transmitting therethrough a specific wavelength. This structure can realize various configurations which allow a specific wavelength to be dropped from the transmission line and to be added to the transmission line, without influencing the configuration of the transmission line.
摘要:
An optical fiber grating device 1 is a device in which a long period grating 14 is formed in a core region 11 of an optical fiber 10 consisting of the core region 11 having a refractive index n1 and an outside diameter 2a, a first cladding region 12 surrounding the core region 11 and having a refractive index n2 and an outside diameter 2b, and a second cladding region 13 surrounding the first cladding region 12 and having a refractive index n3 and an outside diameter 2c. There is a magnitude relation of n1>n2>n3 among the refractive index n1 of the core region 11, the refractive index n2 of the first cladding region 12, and the refractive index n3 of the second cladding region 13, a relative refractive index difference &Dgr;n2 of the first cladding region 12 to the second cladding region 13 is not less than 0.5%, and a thickness (c−b) of the second cladding region 13 with respect to a transmission loss peak wavelength &lgr; is in a range of not less than &lgr; nor more than 10&lgr;.
摘要:
The present invention relates to an optical fiber grating element having structure enabling more precise design and fabrication, a production method thereof, and an optical fiber filter including the same. The optical fiber grating element according to the present invention comprises a multi-mode optical fiber having a first core region of a refractive index n1, a second core of a refractive index n2 provided on a periphery of the first core region, and a cladding region of a refractive index n3 provided on a periphery of the second core region, and having a cutoff wavelength regarding to LP02-mode light on the longer wavelength side than a wavelength band in use. A long-period grating for selectively coupling the fundamental LP01-mode light of a predetermined wavelength in the wavelength band I use to LP0m (m≧2)-mode light is provided in a predetermined region of the first core region.
摘要:
In an optical waveguide grating in an optical fiber having a cladding region around a core region, a periodic refractive index distribution is existed in a predetermined area of the core region along the optical axis. The core region has a composition of GeO2—P2O5—SiO2 based glass, for example, whereas the cladding region is made of SiO2, and the co-doping ratio in the core region is adjusted, so as to lower the temperature dependence of characteristics. The doping amount of P2O5 in the core region is preferably {fraction (1/15)} to 1 times, more preferably 0.6 to 1 times that of GeO2.
摘要:
The present invention relates to a long-period grating device which eliminates only a desirable wavelength of core-mode light in a wavelength band in use from 1525 nm to 1610 nm. The long-period grating device according to the present invention comprises an optical fiber provided with a core region and a cladding region, whereas a long-period grating whose refractive index changes with a period &Lgr; in the advancing direction of light is provided in the core region, wherein the period &Lgr; is set such that the absolute value of a loss peak due to mode coupling concerning a refractive index modulation component with a period &Lgr;/(2n+1) (n=1, 2, 3, 4) is 0.2 dB or less in the wavelength band in use.
摘要:
The present invention relates to an optical amplifier (TDFA) having a configuration which enables to reduce temperature dependence of the gain with reduced power consumption and simple control. The optical amplifier includes, in the order from an input port to an output port, an optical isolator, an optical coupler, an optical amplification fiber, an optical coupler, an optical isolator, an optical gain equalizing filter, a variable optical attenuator, an optical isolator, an optical coupler, an amplification fiber, an optical coupler, and an optical isolator. At least a core region of the optical amplification fiber is doped with Tm element, and signal light in a predetermined wavelength range is amplified by supply of pumping light. The gain equalizing fiber has a loss spectrum which shifts toward the short wavelength side as the temperature of the optical waveguide is higher, thereby equalizing the optical amplification gain of the signal light in the optical amplification fiber.
摘要:
The present invention relates to an optical amplifier (TDFA) having a configuration which enables to reduce temperature dependence of the gain with reduced power consumption and simple control. The optical amplifier includes, in the order from an input port to an output port, an optical isolator, an optical coupler, an optical amplification fiber, an optical coupler, an optical isolator, an optical gain equalizing filter, a variable optical attenuator, an optical isolator, an optical coupler, an amplification fiber, an optical coupler, and an optical isolator. At least a core region of the optical amplification fiber is doped with Tm element, and signal light in a predetermined wavelength range is amplified by supply of pumping light. The gain equalizing fiber has a loss spectrum which shifts toward the short wavelength side as the temperature of the optical waveguide is higher, thereby equalizing the optical amplification gain of the signal light in the optical amplification fiber.
摘要:
The present invention relates to a pumping light source unit for Raman amplification and the like comprising a structure for improving the pumping light spectrum controllability so as to enable output signal light spectrum adjustment within an amplification wavelength band. The pumping light source unit comprises N (≧2) pumping light sources for outputting N channels of pumping light having respective wavelengths different from each other, a multiplexer for multiplexing the N channels of pumping light, and an output structure for supplying a Raman amplification optical fiber with the pumping light outputted from the multiplexer. In particular, at least one of the N pumping light sources includes a variable length pumping light source adapted to change the channel wavelength of pumping light outputted therefrom. This configuration makes it possible to adjust pumping light spectra, thereby improving the controllability of output signal light spectra (Raman gain spectra).
摘要:
The present invention relates to an optical waveguide device having a plurality of long-period gratings, and an optical device equipped with the optical waveguide device. By providing a plurality of long-period gratings having loss wavelength characteristics different from each other, which fluctuate along with an environmental condition such as temperature or tension, within a core region of an optical waveguide device, the present invention enables the loss wavelength characteristic of the whole optical waveguide device to be regulated in response to the environmental change.