摘要:
A dendritic molecule represented by Formula 3: where Pc is metal phthalocyanine represented by Formula 2: where M is a core metal of the dendritic molecule; n is an integer in the range of 1 to 50; each of the Xs is a bivalent linking group independently selected from the group consisting of O, S, CH2, CO, SO2 and NHCO; and each of the Rs is independently selected from the group consisting of CN, COOH, SO3H and PO3H. The dendritic molecule containing metal phthalocyanine is dissolved in an organic solvent, and thus can be used to easily form a hole injection layer or a hole transport layer using solution deposition. The hole injection layer comprising the dendritic molecule containing metal phthalocyanine has good adhesion to an electrode and improved hole injection ability. The organic light emitting diode including the hole injection layer exhibits high luminance and emitting efficiency.
摘要:
A dendritic molecule represented by Formula 3: where Pc is metal phthalocyanine represented by Formula 2: where M is a core metal of the dendritic molecule; n is an integer in the range of 1 to 50; each of the Xs is a bivalent linking group independently selected from the group consisting of O, S, CH2, CO, SO2 and NHCO; and each of the Rs is independently selected from the group consisting of CN, COOH, SO3H and PO3H. The dendritic molecule containing metal phthalocyanine is dissolved in an organic solvent, and thus can be used to easily form a hole injection layer or a hole transport layer using solution deposition. The hole injection layer comprising the dendritic molecule containing metal phthalocyanine has good adhesion to an electrode and improved hole injection ability. The organic light emitting diode including the hole injection layer exhibits high luminance and emitting efficiency.
摘要:
A silsesquioxane-based compound represented by Formula 1 and an organic light-emitting device including the same: wherein R1, R2, R3, R4, R5, R6, R7, and R8 are as defined in the specification. The use of the silsesquioxane-based compound enables to produce an organic light-emitting device with improvement in electrical characteristics such as brightness and efficiency. The silsesquioxane-based compound can exhibit good film smoothness and adhesion, and at the same time, good electrical characteristics such as current efficiency and brightness, and thus, is suitable for use in an organic light-emitting device.
摘要:
A silsesquioxane-based compound represented by Formula 1 and an organic light-emitting device including the same: wherein R1, R2, R3, R4, R5, R6, R7, and R8 are as defined in the specification. The use of the silsesquioxane-based compound enables to produce an organic light-emitting device with improvement in electrical characteristics such as brightness and efficiency. The silsesquioxane-based compound can exhibit good film smoothness and adhesion, and at the same time, good electrical characteristics such as current efficiency and brightness, and thus, is suitable for use in an organic light-emitting device.
摘要:
Provided are a hyperbranched polymer represented by Formula 1 below, an organic light-emitting diode including an organic layer including the hyperbranched polymer, and a method of manufacturing the organic light-emitting diode: For a detailed description about Formula 1, the Detailed Description of the Invention may be referred to. The hyperbranched polymer is excellent in view of hole injection capability and/or electron blocking capability and adhesion with an electrode, and thus, the organic light-emitting diode including the organic layer including the hyperbranched polymer can have good electrical properties.
摘要:
Provided are a hyperbranched polymer represented by Formula 1 below, an organic light-emitting diode including an organic layer including the hyperbranched polymer, and a method of manufacturing the organic light-emitting diode: For a detailed description about Formula 1, the Detailed Description of the Invention may be referred to. The hyperbranched polymer is excellent in view of hole injection capability and/or electron blocking capability and adhesion with an electrode, and thus, the organic light-emitting diode including the organic layer including the hyperbranched polymer can have good electrical properties.
摘要:
An organic light emitting device and a method of manufacturing the same, the organic light emitting device includes a first electrode, a second electrode, and an organic layer that has at least a multi-coated emissive layer and which is interposed between the first and second electrodes. The multi-coated emissive layer is a single layer composed of a neutral emissive material and an no−ne parameter of the emissive layer is greater than an no−ne parameter of a single-coated layer. The organic light emitting device has a longer lifetime and high efficiency.
摘要:
An organic light emitting device has a structure in which the penetration of harmful materials into an inner functional layer is blocked to prevent the degradation of the performance of the organic light emitting device and an organic electronic device includes such an organic light emitting device. The organic light emitting device includes an insulating substrate; a light emitting unit arranged on the insulating substrate and including a first electrode layer to inject holes, a second electrode layer to inject electrons, and an active layer interposed between the first and second electrode layers to emit light by recombining the holes and electrons; and a passivation layer including alternately arranged barrier layers and buffer layers to seal the light emitting unit from an external atmosphere, each barrier layer including at least one material selected from a group consisting of an activated metal oxide, an activated metal nitride, or an activated metal oxynitride, and each buffer layer being of a polymer organic material.
摘要:
Provided are a conducting polymer composition and an electronic device including a layer formed using the conducting polymer composition. The conducting polymer composition contains: at least one compound selected from the group consisting of a siloxane compound of formula (1) below, a siloxane compound of formula (2) below, and a silane compound of formula (3) below; and a conducting polymer: where R1, R2, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15, X16, X17, X18, X19, X20, D, p, m, q, and r are the same as described in the detailed description of the invention. The electronic device including a layer formed using the conducting polymer composition has excellent electroluminescent characteristics and long lifetime.
摘要:
An electroluminescent device comprises a substrate, a first electrode, a second electrode, and an organic layer disposed between the first electrode and the second electrode, and including at least a light-emitting layer. A metal nano pattern which enables emission of polarized light is provided on one surface of at least one of the first electrode and the second electrode, wherein a grating period of the metal nano pattern satisfies the relation of Formula 1 below. A method of preparing the electroluminescent device comprises providing a substrate, first and second electrodes, and an organic layer including a light-emitting layer, with a metal nano pattern being provided on at least one of the first and second electrodes. Formula 1 is described in more detail in the description of the invention. The electroluminescent device can achieve emission of polarized light, without reforming materials used in forming the organic layer. D
摘要翻译:电致发光器件包括衬底,第一电极,第二电极和设置在第一电极和第二电极之间的有机层,并且至少包括发光层。 在第一电极和第二电极中的至少一个的一个表面上设置能够发射偏振光的金属纳米图案,其中金属纳米图案的光栅周期满足下面的式1的关系。 制备电致发光器件的方法包括提供衬底,第一和第二电极以及包括发光层的有机层,金属纳米图案设置在第一和第二电极中的至少一个上。 在本发明的描述中更详细地描述了公式1。 电致发光器件可以实现偏振光的发射,而不需要用于形成有机层的重整材料。 D <λn o + n i sin ... 我公式1