Abstract:
A system comprises a processor-implemented tool configured to generate a layout of an integrated circuit (IC) die. At least one non-transitory machine readable storage medium includes a first portion encoded with a first gate-level description of first and second circuit patterns to be formed on first and second integrated circuit (IC) dies, respectively, and a second portion encoded with a second gate level description of the first and second circuit patterns received from the processor implemented tool. The second gate level description includes power and ground ports, and the first gate level description does not include power and ground ports. A processor-implemented first verification module is provided for comparing the first and second gate level descriptions and outputting a verified second gate-level description of the first and second circuit patterns.
Abstract:
A system comprises a processor-implemented tool configured to generate a layout of an integrated circuit (IC) die. At least one non-transitory machine readable storage medium includes a first portion encoded with a first gate-level description of first and second circuit patterns to be formed on first and second integrated circuit (IC) dies, respectively, and a second portion encoded with a second gate level description of the first and second circuit patterns received from the processor implemented tool. The second gate level description includes power and ground ports, and the first gate level description does not include power and ground ports. A processor-implemented first verification module is provided for comparing the first and second gate level descriptions and outputting a verified second gate-level description of the first and second circuit patterns.
Abstract:
A method for timing analysis includes using the processor to determine an impedance profile of a coupling between at least a first inter-level via (ILV) and a a second ILV or a device, as a function of at least different frequency values. The impedance profile includes a plurality of impedance values corresponding to respective frequency values. An effective capacitance value corresponding to each respective impedance value is determined. At least one table is provided with respective impedance values and respective effective capacitance values for each respective frequency value. An RC extraction of a design layout of an ILV circuit is conducted using the populated table and based on determined effective capacitance values.