Method of manufacturing semiconductor device

    公开(公告)号:US10714598B2

    公开(公告)日:2020-07-14

    申请号:US15801128

    申请日:2017-11-01

    Abstract: In a method for manufacturing a semiconductor device, fin structures each having an upper portion and a lower portion, are formed. The lower portion is embedded in an isolation insulating layer disposed over a substrate and the upper portion protrudes the isolation insulating layer. A gate dielectric layer is formed over the upper portion of each of the fin structures. A conductive layer is formed over the gate dielectric layer. A cap layer is formed over the conductive layer. An ion implantation operation is performed on the fin structures with the cap layer. The ion implantation operation is performed multiple times using different implantation angles to introduce ions into one side surface of each of the fin structures.

    Method of manufacturing semiconductor devices

    公开(公告)号:US11043580B2

    公开(公告)日:2021-06-22

    申请号:US16808689

    申请日:2020-03-04

    Abstract: In a method for manufacturing a semiconductor device, fin structures each having an upper portion and a lower portion, are formed. The lower portion is embedded in an isolation insulating layer disposed over a substrate and the upper portion protrudes the isolation insulating layer. A gate dielectric layer is formed over the upper portion of each of the fin structures. A conductive layer is formed over the gate dielectric layer. A cap layer is formed over the conductive layer. An ion implantation operation is performed on the fin structures with the cap layer. The ion implantation operation is performed multiple times using different implantation angles to introduce ions into one side surface of each of the fin structures.

    Method for fabricating a semiconductor device

    公开(公告)号:US11031293B2

    公开(公告)日:2021-06-08

    申请号:US16656209

    申请日:2019-10-17

    Abstract: A method for fabricating a semiconductor device includes forming a fin extending along a first direction on a semiconductor substrate and forming a sacrificial gate electrode structure extending along a second direction substantially perpendicular to the first direction over the fin. The sacrificial gate electrode structure comprises a sacrificial gate dielectric layer and a sacrificial gate electrode layer disposed over the sacrificial gate dielectric layer. Opposing gate sidewall spacers are formed extending along the second direction, on opposing sides of the sacrificial gate electrode layer. The sacrificial gate electrode layer is removed to form a gate space. Fluorine is implanted into the gate sidewall spacers after removing the gate electrode layer by performing a first fluorine implantation. The sacrificial gate dielectric layer is removed and a high-k gate dielectric layer is formed in the gate space. Fluorine is implanted into the gate sidewall spacers and the fin after forming the high-k gate dielectric layer by performing a second fluorine implantation.

    Method for fabricating a semiconductor device

    公开(公告)号:US11011428B2

    公开(公告)日:2021-05-18

    申请号:US16656247

    申请日:2019-10-17

    Abstract: A method for fabricating a semiconductor device includes forming a fin extending along a first direction on a semiconductor substrate and forming a sacrificial gate electrode structure extending along a second direction substantially perpendicular to the first direction over the fin. The sacrificial gate electrode structure comprises a sacrificial gate dielectric layer and a sacrificial gate electrode layer disposed over the sacrificial gate dielectric layer. Opposing gate sidewall spacers are formed extending along the second direction, on opposing sides of the sacrificial gate electrode layer. The sacrificial gate electrode layer is removed to form a gate space. Fluorine is implanted into the gate sidewall spacers after removing the gate electrode layer by performing a first fluorine implantation. The sacrificial gate dielectric layer is removed and a high-k gate dielectric layer is formed in the gate space. Fluorine is implanted into the gate sidewall spacers and the fin after forming the high-k gate dielectric layer by performing a second fluorine implantation.

Patent Agency Ranking