Abstract:
A device includes a first buried layer over a substrate, a second buried layer over the first buried layer, a first well over the first buried layer and the second buried layer, a first high voltage well, a second high voltage well and a third high voltage well extending through the first well, wherein the second high voltage well is between the first high voltage well and the third high voltage well, a first drain/source region in the first high voltage well, a first gate electrode over the first well, a second drain/source region in the second high voltage well and a first isolation region in the second high voltage well, and between the second drain/source region and the first gate electrode, wherein a bottom of the first isolation region is lower than a bottom of the second drain/source region.
Abstract:
A device includes a first buried layer over a substrate, a second buried layer over the first buried layer, a first well over the first buried layer and the second buried layer, a first high voltage well, a second high voltage well and a third high voltage well extending through the first well, wherein the second high voltage well is between the first high voltage well and the third high voltage well, a first drain/source region in the first high voltage well, a first gate electrode over the first well, a second drain/source region in the second high voltage well and a first isolation region in the second high voltage well, and between the second drain/source region and the first gate electrode, wherein a bottom of the first isolation region is lower than a bottom of the second drain/source region.
Abstract:
The present disclosure relates to a method of ultra-high voltage UHV device formation which utilizes a composite step oxide as a gate oxide to achieve isolation of the gate and drain-side spacer from the drain region. The thickness of the step gate oxide improves device breakdown voltage, and allows for the drain to be self-aligned to the gate, thus reducing device drift region and improves device on state resistance. The composite isolation layer comprises two or more dielectric layers which are formed through a series of deposition and etch steps including thermal oxidation and chemical vapor deposition. The composite isolation layer may then be etched to form a self-align structure which utilizes the spacers as hard mask to achieve a reduced device pitch relative to some prior art methods. A thicker gate oxide under one or both spacers can improve yield and high temperature operating life of the UHV device.
Abstract:
A device includes a first buried layer over a substrate, a second buried layer over the first buried layer, a first well over the first buried layer and the second buried layer, a first high voltage well, a second high voltage well and a third high voltage well extending through the first well, wherein the second high voltage well is between the first high voltage well and the third high voltage well, a first drain/source region in the first high voltage well, a first gate electrode over the first well, a second drain/source region in the second high voltage well and a first isolation region in the second high voltage well, and between the second drain/source region and the first gate electrode, wherein a bottom of the first isolation region is lower than a bottom of the second drain/source region.