Abstract:
A multilayer ceramic capacitor includes: a multilayer structure in which each of a plurality of ceramic dielectric layers and each of a plurality of internal electrode layers are alternately stacked, wherein: (a current value at 10 V/μm when a direct voltage is applied to the plurality of the ceramic dielectric layers at 125 degrees C.)/(a current value at 10 V/μm when a direct voltage is applied to the plurality of the ceramic dielectric layers at 85 degrees C.) is more than 5 and less than 20; and a donor element concentration in the plurality of ceramic dielectric layers is 0.05 atm % or more and 0.3 atm % or less.
Abstract:
A dielectric ceramic is formed with sintered grains constituting the dielectric have an average grain size of 0.2 to 1.0 gm and an oxygen defect concentration of 0.2 to 0.5%. An acceptor element is added to the dielectric ceramic by no more than 0.5 mol per 100 mol of the primary component of BaTiO3. The oxygen defect concentration is temporarily increased by reduction and sintering, after which the oxygen defect concentration is reduced through the subsequent re-oxidization process. Crystal strain generated in the re-oxidization process increases the dielectric constant.
Abstract:
A multilayer ceramic capacitor includes: a multilayer structure in which dielectric layers and internal electrode layers are alternately stacked; wherein a main component of the dielectric layers is a ceramic material having a main phase having a perovskite structure (ABO3) wherein a B site includes an element solid-solved in the B site and acting as a donor; wherein an A site and the B site of the ceramic material includes a rare earth element, wherein (an amount of the rare earth element substitutionally solid-solved in the A site)/(an amount of the rare earth element substitutionally solid-solved in the B site) is 0.75 or more and 1.25 or less. The amount of the element acting as the donor in the B site is 0.05 to 0.3 atm % relative to a main component element of the B site.
Abstract:
A multilayer ceramic capacitor includes: a multilayer structure in which each of a plurality of dielectric layers and each of a plurality of internal electrode layers are alternately stacked, wherein a concentration of a rare earth element in an active region with respect to a main component ceramic of the active region is equal to or more than a concentration of a rare earth element in at least a part of a protective region with respect to a main component ceramic of the protective region, wherein an average ionic radius of the rare earth element of the at least a part of the protective region is equal to or less than an average ionic radius of the rare earth element in the active region.
Abstract:
A multilayer ceramic capacitor includes: a pair of external electrodes; a first internal electrode containing a base metal and coupled to one of the external electrodes; a dielectric layer stacked on the first internal electrode and containing the base metal and a ceramic material mainly composed of barium titanate; and a second internal electrode stacked on the dielectric layer, containing the base metal, and coupled to another one of the external electrodes, wherein a concentration of the base metal in each of five regions, which are equally divided regions between locations 50 nm away from the first and second internal electrodes in a stacking direction between the first and second internal electrodes, is within ±20% of an average of the concentrations of the base metal in the five regions, and an atomic concentration ratio of Mg to Ti is 0 or greater and less than 0.002 in the dielectric layer.
Abstract:
A multilayer ceramic electronic device includes a multilayer chip. The multilayer chip has a capacity section and a side margin. The side margin includes boron and silicon, and includes a first section and a second section in order from the capacity section side toward outside. A boron concentration of the first section is larger than a boron concentration of the second section. A segregation degree of silicon in the second section is larger than a segregation degree of silicon in the first section.
Abstract:
A multilayer ceramic capacitor includes: a pair of external electrodes; a first internal electrode that is coupled to one of the pair of external electrodes; a dielectric layer that is stacked on the first internal electrode and contains BaTiO3 and Ni; and a second internal electrode that is stacked on the dielectric layer, contains Ni, and is coupled to another one of the pair of external electrodes, wherein Ni concentrations obtained by analyzing five regions with a transmission electron microscope are within a range from 0.015 to 0.045, the five regions being obtained by dividing a region from a location 50 nm away from the first internal electrode of the dielectric layer to a location 50 nm away from the second internal electrode of the dielectric layer in a stacking direction between the first internal electrode and the second internal electrode equally into five.
Abstract:
With a multilayer ceramic capacitor whose average grain size of the dielectric grains present at the outermost layer position P1 in the laminate is given by D1, average grain size of the dielectric grains present at the center position P2 in the laminate is given by D2, and average grain size of the dielectric grains present at the 25%-penetrated position P3 which is a position penetrated into the laminate by 25% is given by D3, growth of the dielectric grains occurring as a result of sintering is partially suppressed in such a way that the relationships of average grain sizes D1, D2, and D3 satisfy the conditions of 1.5×D1
Abstract:
A multilayer ceramic capacitor includes: a multilayer structure in which each of a plurality of dielectric layers and each of a plurality of internal electrode layers are alternately stacked, wherein a concentration of a rare earth element in an active region with respect to a main component ceramic of the active region is equal to or more than a concentration of a rare earth element in at least a part of a protective region with respect to a main component ceramic of the protective region, wherein an average ionic radius of the rare earth element of the at least a part of the protective region is equal to or less than an average ionic radius of the rare earth element in the active region.
Abstract:
A ceramic electronic device includes: a multilayer structure; and a cover layer, wherein a concentration of Mn of the cover layer with respect to a main component ceramic is larger than a concentration of Mn of the dielectric layers with respect to a main component ceramic in a capacity section, wherein an average crystal grain diameter of a first dielectric layer is smaller than that of a second dielectric layer, and a concentration of Mn of the first dielectric layer with respect to the main component ceramic is larger than a concentration of Mn of the second dielectric layer with respect to the main component ceramic, in the capacity section.