摘要:
A super-resolution optical recording medium has at least a recording layer and a super resolution layer on a substrate. In the recording layer, a minimum recording mark is formed with spaces within a beam spot of a laser beam in recording. The minimum recording mark has a size of a resolution limit of a reproduction optical system or less, and can be reproduced by the reproduction optical system due to the existence of the super solution layer. The minimum recording mark in an AFM image takes the shape of a convex arc on a leading edge thereof and the shape of a concave arc on a trailing edge thereof (the AFM image is a plan view which can be observed on a surface when the light transmission layer is removed), and spaces have the similar shape to these.
摘要:
A method for recording information on an optical recording medium in which a laser beam modulated into one or a plurality of write pulses with one or a plurality of write powers in accordance with target data to be written is projected onto a recording layer of the optical recording medium to form a record mark. During recording the information on the optical recording medium, a data level and a weight index are assigned to each channel bit in reference data trains before and after the target data. Recording compensation of the target data is carried out in accordance with the sum totals of the products of the data level and the weight index in the reference data trains, so that it is possible to easily carry out high a real recording by writing fine mark/space trains.
摘要:
In a data recording and readingout system in which data is recorded and readout, or is readout on, or from an optical recording medium 1 by irradiating a laser beam having a wavelength “λ” via an objective lens of a numerical aperture “NA” onto said optical recording medium, while the optical recording medium contains a layered structure formed by sandwiching a dielectric layer 6 between a recording layer 7 and an optical absorption layer 5, with respect to the optical recording medium 1 arranged in such a manner that data recorded by a recorded mark train can be readout and the recorded mark train contains a recorded mark smaller than, or equal to a limit of resolution, the laser beam is irradiated via the objective lens and a solid immersion lens having a refractive index “n” which is positioned between the optical recording medium and the objective lens, so that the data is recorded and readout, or is readout with respect to the optical recording medium by a recorded mark train which contains a recorded mark smaller than, equal to “λ”/(4·n2·NA).”
摘要:
A method for reproducing data according to the present invention is adapted for reproducing data recorded in an optical recording disc including a multi-layered body formed by forming a decomposition reaction layer containing noble metal oxide as a primary component and a light absorption layer so as to sandwich a dielectric layer therebetween by irradiating a laser beam onto the optical recording disc and forming a recording mark train including at least one of a recording mark having a length shorter than a resolution limit and a blank region having a length shorter than the resolution limit therein, and is constituted by changing the read power Pr of the laser beam in accordance with a readout linear velocity at which data are to be reproduced from the optical recording disc. According to the thus constituted method for reproducing data, even in the case where the length of a recording mark or the length of a blank region between neighboring recording marks is shorter than the resolution limit, it is possible to record and reproduce a recording mark train including these recording marks and the blank regions. Therefore, this method can be applied to an optical recording medium whose storage capacity is markedly increased.
摘要:
A method for determining recording laser power on a super-resolution optical recording medium, on which information is recorded on a super-resolution optical recording medium by irradiating a laser beam modulated into a recording pulse train according to recording data to thereby form a recording mark train including recording marks and spaces smaller than the resolution limit of a reproduction optical system and recording marks and spaces equal to or larger than the resolution limit, is provided. At the time of recording, the method determines a minimum value and a maximum value of recordable laser powers determined by test-writing before recording, and determines a maximum value of a recordable range of laser power by adding to the minimum value one-third of a difference between the maximum value of the recordable laser powers and the minimum value. The method determines an optimal range of recording laser power from the minimum value of recordable laser powers to the maximum value of the recordable range.
摘要:
An optical recording medium 10 of the present invention has a support substrate 11 and a light-transmitting layer 12, and further has a first dielectric layer 31, a noble metal nitride layer 23, a second dielectric layer 32, a light absorption layer 22, a third dielectric layer 33, and a reflection layer 21, all of which are interposed between the light-transmitting layer 12 and the support substrate 11. In the optical recording medium of the present invention, a laser beam 40 is irradiated on the substrate from the light entrance face 12a, to thus locally decompose the noble metal nitride layer 23, so that record marks can be formed by means of resultant bubble pits. In this case, a gas filling the bubble pits, which are to form the record marks, is a chemically-stable nitrogen gas (N2). The risk of this gas oxidizing or corroding other layers is very remote, and high storage reliability can be achieved.
摘要翻译:本发明的光记录介质10具有支撑基板11和透光层12,并且还具有第一电介质层31,贵金属氮化物层23,第二电介质层32,光吸收层22, 第三电介质层33和反射层21,全部被插入在透光层12和支撑基板11之间。 在本发明的光记录介质中,激光束40从光入射面12a照射在基板上,从而局部分解贵金属氮化物层23,从而可以通过产生的气泡形成记录标记 坑 在这种情况下,填充形成记录标记的气泡坑的气体是化学稳定的氮气(N 2 O 2)。 这种气体氧化或腐蚀其他层的风险非常遥远,可以实现高存储可靠性。
摘要:
A reproduction apparatus is capable of reproducing information recorded on information recording media including at least a super RENS recording medium. The reproduction apparatus includes: an optical head that receives laser light that has been reflected or transmitted by the information recording medium and photoelectrically converts the laser light to an electric signal; a signal processing circuit that extracts an AC component from the electric signal and attenuates the AC component by a predetermined attenuation; an amplitude controlling circuit that controls an amplitude of an electric signal outputted from the signal processing circuit so as to become a predetermined amplitude; and a reproduction circuit that reproduces information recorded on the medium based on an electric signal outputted from the amplitude controlling circuit. An information recording medium testing apparatus includes the reproduction apparatus and a test information generating circuit that generates test information.
摘要:
An optical recording medium includes a substrate, a first dielectric layer, a recording layer, a second dielectric layer, a super-resolution layer, and a third dielectric layer, which are provided in that order. The super-resolution layer is formed of a material configured such that voids are generated when the material is irradiated with DC light at a predetermined irradiation power for 1 to 300 seconds. Therefore, super-resolution reproduction can be made such that the irradiation power of a readout laser beam does not depend on the size of a recording mark.
摘要:
An optical recording disc includes a substrate, a third dielectric layer, a light absorption layer, a second dielectric layer, a decomposition reaction layer containing platinum oxide as a primary component, a first dielectric layer, and a light transmission layer. The decomposition reaction layer has a thickness of 2 nm to 20 nm, and the optical recording disc is constituted so that when it is irradiated with a laser beam from the side of the light transmission layer, the platinum oxide contained in the decomposition reaction layer as a primary component is decomposed into platinum and oxygen. A bubble pit is formed in the decomposition reaction layer by thus generated oxygen gas, and fine particles of the noble metal precipitate into the bubble pit, thereby forming a recording mark in the decomposition reaction layer.
摘要:
An optical recording medium includes a substrate, a first dielectric layer, a recording layer, a second dielectric layer, a super-resolution layer, and a third dielectric layer, which are provided in that order. The super-resolution layer is formed of a material configured such that voids are generated when the material is irradiated with DC light at a predetermined irradiation power for 1 to 300 seconds. Therefore, super-resolution reproduction can be made such that the irradiation power of a readout laser beam does not depend on the size of a recording mark.