摘要:
Methods of fabricating integrated circuit devices are provided using composite spacer formation processes. A composite spacer structure is used to pattern and etch the layer stack when forming select features of the devices. A composite storage structure includes a first spacer formed from a first layer of spacer material and second and third spacers formed from a second layer of spacer material. The process is suitable for making devices with line and space sizes at less then the minimum resolvable feature size of the photolithographic processes being used. Moreover, equal line and space sizes at less than the minimum feature size. In one embodiment, an array of dual control gate non-volatile flash memory storage elements is formed using composite spacer structures. When forming the active areas of the substrate, with overlying strips of a layer stack and isolation regions therebetween, a composite spacer structure facilitates equal lengths of the strips and isolation regions therebetween.
摘要:
Methods of fabricating integrated circuit devices are provided using composite spacer formation processes. A composite spacer structure is used to pattern and etch the layer stack when forming select features of the devices. A composite storage structure includes a first spacer formed from a first layer of spacer material and second and third spacers formed from a second layer of spacer material. The process is suitable for making devices with line and space sizes at less then the minimum resolvable feature size of the photolithographic processes being used. Moreover, equal line and space sizes at less than the minimum feature size are possible. In one embodiment, an array of dual control gate non-volatile flash memory storage elements is formed using composite spacer structures. When forming the active areas of the substrate, with overlying strips of a layer stack and isolation regions therebetween, a composite spacer structure facilitates equal lengths of the strips and isolation regions therebetween.
摘要:
Non-volatile memory and integrated memory and peripheral circuitry fabrication processes are provided. Sets of charge storage regions, such as NAND strings including multiple non-volatile storage elements, are formed over a semiconductor substrate using a layer of charge storage material such as a first layer of polysilicon. An intermediate dielectric layer is provided over the charge storage regions. A layer of conductive material such as a second layer of polysilicon is deposited over the substrate and etched to form the control gates for the charge storage regions and the gate regions of the select transistors for the sets of storage elements. The first layer of polysilicon is removed from a portion of the substrate, facilitating fabrication of the select transistor gate regions from only the second layer of polysilicon. Peripheral circuitry formation is also incorporated into the fabrication process to form the gate regions for devices such as high voltage and logic transistors. The gate regions of these devices can be formed from the layer forming the control gates of the memory array.
摘要:
Non-volatile semiconductor memory devices with dual control gate memory cells and methods of forming the same using integrated peripheral circuitry formation are provided. Strips of charge storage material elongated in a row direction across the surface of a substrate with strips of tunnel dielectric material therebetween are formed. Forming the strips defines the dimension of the resulting charge storage structures in the column direction. The strips of charge storage material can include multiple layers of charge storage material to form composite charge storage structures in one embodiment. Strips of control gate material are formed between strips of charge storage material adjacent in the column direction. The strips of charge storage and control gate material are divided along their lengths in the row direction as part of forming isolation trenches and columns of active areas. After dividing the strips, the charge storage material at the peripheral circuitry region of the substrate is etched to define a gate dimension in the column direction for a peripheral transistor. Control gate interconnects can be formed to connect together rows of isolated control gates to extrinsically form word lines.
摘要:
Non-volatile semiconductor memory devices with dual control gate memory cells and methods of forming the same using integrated select and peripheral circuitry formation are provided. Strips of charge storage material elongated in a column direction across the surface of a substrate with strips of tunnel dielectric material therebetween are formed. The strips of charge storage material can include multiple layers of charge storage material to form composite charge storage structures in one embodiment. After forming isolation trenches in the substrate between active areas below the strips of charge storage material, spacer-assisted patterning is used to form a pattern at the memory array region. Strips of photoresist are patterned over a portion of the pattern at the memory array. Photoresist is also applied at the peripheral circuitry region. At least a portion of the layer stack is etched using the photoresist as a mask before removing the photoresist and etching the strips of charge storage material to form the charge storage structures.
摘要:
Non-volatile semiconductor memory devices with dual control gate memory cells and methods of forming the same using integrated select and peripheral circuitry formation are provided. Strips of charge storage material elongated in a column direction across the surface of a substrate with strips of tunnel dielectric material therebetween are formed. The strips of charge storage material can include multiple layers of charge storage material to form composite charge storage structures in one embodiment. After forming isolation trenches in the substrate between active areas below the strips of charge storage material, spacer-assisted patterning is used to form a pattern at the memory array region. Strips of photoresist are patterned over a portion of the pattern at the memory array. Photoresist is also applied at the peripheral circuitry region. At least a portion of the layer stack is etched using the photoresist as a mask before removing the photoresist and etching the strips of charge storage material to form the charge storage structures.
摘要:
Non-volatile memory and integrated memory and peripheral circuitry fabrication processes are provided. Sets of charge storage regions, such as NAND strings including multiple non-volatile storage elements, are formed over a semiconductor substrate using a layer of charge storage material such as a first layer of polysilicon. An intermediate dielectric layer is provided over the charge storage regions. A layer of conductive material such as a second layer of polysilicon is deposited over the substrate and etched to form the control gates for the charge storage regions and the gate regions of the select transistors for the sets of storage elements. The first layer of polysilicon is removed from a portion of the substrate, facilitating fabrication of the select transistor gate regions from only the second layer of polysilicon. Peripheral circuitry formation is also incorporated into the fabrication process to form the gate regions for devices such as high voltage and logic transistors. The gate regions of these devices can be formed from the layer forming the control gates of the memory array.
摘要:
Non-volatile semiconductor memory devices with dual control gate memory cells and methods of forming the same using integrated peripheral circuitry formation are provided. Strips of charge storage material elongated in a row direction across the surface of a substrate with strips of tunnel dielectric material therebetween are formed. Forming the strips defines the dimension of the resulting charge storage structures in the column direction. The strips of charge storage material can include multiple layers of charge storage material to form composite charge storage structures in one embodiment. Strips of control gate material are formed between strips of charge storage material adjacent in the column direction. The strips of charge storage and control gate material are divided along their lengths in the row direction as part of forming isolation trenches and columns of active areas. After dividing the strips, the charge storage material at the peripheral circuitry region of the substrate is etched to define a gate dimension in the column direction for a peripheral transistor. Control gate interconnects can be formed to connect together rows of isolated control gates to extrinsically form word lines.
摘要:
A nonvolatile memory array includes floating gates that have an inverted-T shape in cross section along a plane that is perpendicular to the direction along which floating cells are connected together to form a string. Adjacent strings are isolated by shallow trench isolation structures. An array having inverted-T shaped floating gates may be formed in a self-aligned manner.
摘要:
A nonvolatile memory array includes floating gates that have an inverted-T shape in cross section along a plane that is perpendicular to the direction along which floating cells are connected together to form a string. Adjacent strings are isolated by shallow trench isolation structures. An array having inverted-T shaped floating gates may be formed in a self-aligned manner.