摘要:
In a solid electrolytic capacitor, a capacitor element laminate formed by stacking capacitor elements each using a valve metal as an anode body is bonded to a substrate by a conductive adhesive and packaged by a resin portion. The substrate includes a printed substrate made of an epoxy resin. On its mounting surface for the capacitor element laminate, there are provided an anode mounting portion and a cathode mounting portion each made of a copper base material. The anode mounting portion and the cathode mounting portion are electrically connected to an external anode terminal and an external cathode terminal, respectively, formed on the mounting surface of the solid electrolytic capacitor, through anode vias and cathode vias each penetrating through the epoxy resin. A part of the anode mounting portion on the substrate (6) extends to the outside of the packaging resin portion.
摘要:
In a solid electrolytic capacitor, a capacitor element laminate formed by stacking capacitor elements each using a valve metal as an anode body is bonded to a substrate by a conductive adhesive and packaged by a resin portion. The substrate includes a printed substrate made of an epoxy resin. On its mounting surface for the capacitor element laminate, there are provided an anode mounting portion and a cathode mounting portion each made of a copper base material. The anode mounting portion and the cathode mounting portion are electrically connected to an external anode terminal and an external cathode terminal, respectively, formed on the mounting surface of the solid electrolytic capacitor, through anode vias and cathode vias each penetrating through the epoxy resin. A part of the anode mounting portion on the substrate (6) extends to the outside of the packaging resin portion.
摘要:
A solid electrolytic capacitor includes a valve metal formed with an anodized film; an inner conductive polymer film formed on the anodized film; and an outer conductive polymer film formed on the inner conductive polymer film. The outer conductive polymer film is obtained by: preparing a first polymer solution (PEDOT/PSSA); dissolving a predetermined dissolved substance in a non-aqueous solvent, the predetermined dissolved substance being selected from the group consisting of boric acid, 1-naphthalenesulfonic acid, 2-naphthalenesulfonic acid, 1,3,6-naphthalenetrisulfonic acid, and polystyrenesulfonic acid, and a salt thereof; mixing the dissolved solvent with pure water to obtain an additive solution; adding the additive solution into the first polymer solution to obtain a second polymer solution; and applying the second polymer solution to the inner conductive polymer film.
摘要:
A solid electrolytic capacitor is provided which is capable of exhibiting an excellent characteristic and high reliability against thermal stress. The solid electrolytic capacitor includes a base member having a capacitor element connecting face on its upper surface side and an electrode mounting face on its lower surface side and being made up of an insulating plate having first conductors and second conductors, disposed in a staggered format, each providing conduction between the upper and lower surface sides of the base member, and the capacitor element having anode portions and cathode portions, each being disposed in a staggered format, connected to each of the first and second conductors.
摘要:
A solid electrolytic capacitor is provided which is capable of exhibiting an excellent characteristic and high reliability against thermal stress. The solid electrolytic capacitor includes a base member having a capacitor element connecting face on its upper surface side and an electrode mounting face on its lower surface side and being made up of an insulating plate having first conductors and second conductors, disposed in a staggered format, each providing conduction between the upper and lower surface sides of the base member, and the capacitor element having anode portions and cathode portions, each being disposed in a staggered format, connected to each of the first and second conductors.
摘要:
In a thin solid electrolytic capacitor including a solid electrolytic capacitor element disposed on a substrate, the solid electrolytic capacitor element has an upper surface largely extending along the substrate as compared with a height dimension thereof from the substrate. A casing portion is at least partly made of a resin and surrounds the solid electrolytic capacitor element jointly with the substrate. The casing portion includes a non-adhesive member that is in contact with an upper surface of the solid electrolytic capacitor element, but is not adhesive to the solid electrolytic capacitor element.
摘要:
Anodized films are formed at both surfaces of an aluminum base and, at the center portion on each side of the aluminum base, a solid electrolyte layer of a conductive polymer, a graphite layer, and a metal layer are stacked in the order, thereby forming a rectangular cathode portion. An insulator layer is formed at the peripheries of four sides of the cathode portion and, further, an anode lead frame is provided at the peripheries of four sides of the upper insulator layer, thereby forming an anode portion. Openings are formed at four corners of the insulator layer or the anode portion, thereby establishing electrical connection between the cathode portions on both sides of the aluminum base. By setting the ratio of a total region, occupied by the openings, of the cathode portion to 25% or less, the ESL of a capacitor can be suppressed low even when the openings are provided.
摘要:
A solid-state electrolytic capacitor including a stacked body of a solid-state electrolytic capacitor element unit and an electrode conversion board. The unit includes two kinds of solid-state electrolytic capacitor elements. Each of first kind of solid-state electrolytic capacitor elements uses an anode body having a total thickness of an aluminum foil of 350 μm and a residual core thickness, i.e., the total thickness minus the thickness of an etched layer, is 50 μm. A second kind of solid-state electrolytic capacitor element provided on the mounting surface side uses an anode body having a total thickness of an aluminum foil of 150 μm and a residual core thickness is 50 μm. The electrode conversion board includes external anode and external cathode terminals that are arranged In a checkered manner and also includes, on the side opposite to the board, anode electrode and cathode electrode plates.
摘要:
Anodized films are formed at both surfaces of an aluminum base and, at the center portion on each side of the aluminum base, a solid electrolyte layer of a conductive polymer, a graphite layer, and a metal layer are stacked in the order, thereby forming a rectangular cathode portion. An insulator layer is formed at the peripheries of four sides of the cathode portion and, further, an anode lead frame is provided at the peripheries of four sides of the upper insulator layer, thereby forming an anode portion. Openings are formed at four corners of the insulator layer or the anode portion, thereby establishing electrical connection between the cathode portions on both sides of the aluminum base. By setting the ratio of a total region, occupied by the openings, of the cathode portion to 25% or less, the ESL of a capacitor can be suppressed low even when the openings are provided.
摘要:
A solid electrolytic capacitor comprising: a valve metal formed with an anodized film; an inner conductive polymer film formed on the anodized film; and an outer conductive polymer film formed on the inner conductive polymer film. The outer conductive polymer film is obtained by: preparing a first polymer solution (PEDOT/PSSA); dissolving a predetermined dissolved substance in a non-aqueous solvent, the predetermined dissolved substance being selected from the group consisting of boric acid, 1-naphthalenesulfonic acid, 2-naphthalenesulfonic acid, 1,3,6-naphthalenetrisulfonic acid, and polystyrenesulfonic acid, and a salt thereof; mixing the dissolved solvent with pure water to obtain an additive solution; adding the additive solution into the first polymer solution to obtain a second polymer solution; and applying the second polymer solution to the inner conductive polymer film.