摘要:
Heat-expandable microspheres include a shell of thermoplastic resin and core material encapsulated in the shell. The core material include a blowing agent having a boiling point not higher than the softening point of the thermoplastic resin and a gas migration inhibitor having a boiling point higher than the softening point of the thermoplastic resin. The ratio of the gas migration inhibitor to the core material is at least 1 weight percent and below 30 weight percent. The average particle size of the heat-expandable microspheres ranges from 1 to 100 micrometers.
摘要:
Heat-expandable microspheres include a shell of thermoplastic resin and core material encapsulated in the shell. The core material include a blowing agent having a boiling point not higher than the softening point of the thermoplastic resin and a gas migration inhibitor having a boiling point higher than the softening point of the thermoplastic resin. The ratio of the gas migration inhibitor to the core material is at least 1 weight percent and below 30 weight percent. The average particle size of the heat-expandable microspheres ranges from 1 to 100 micrometers.
摘要:
A rubber composition for a tire containing (i) 100 parts by weight of a diene-based rubber and (ii) 0.5 to 25 parts by weight of a heat-expandable microcapsule including a shell, and a substance capable of vaporizing or expanding under heating to thereby generate a gas and a nonpolar oil, both encapsulated in the shell,wherein the shell is made of a thermoplastic resin obtained by polymerization of a nitrile-based monomer (I), a monomer (II) having an unsaturated double bond and a carboxyl group in the molecule thereof, an optional monomer (III) having two or more polymerizable double bonds, and an optional copolymerizable monomer (IV) for adjusting the expansion properties.
摘要:
A rubber composition for a tire containing (i) 100 parts by weight of a diene-based rubber and (ii) 0.5 to 25 parts by weight of a heat-expandable microcapsule including a shell, and a substance capable of vaporizing or expanding under heating to thereby generate a gas and a nonpolar oil, both encapsulated in the shell, wherein the shell is made of a thermoplastic resin obtained by polymerization of a nitrile-based monomer (I), a monomer (II) having an unsaturated double bond and a carboxyl group in the molecule thereof, an optional monomer (III) having two or more polymerizable double bonds, and an optional copolymerizable monomer (IV) for adjusting the expansion properties.
摘要:
Heat-expandable microspheres include a shell of thermoplastic resin and a blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin, have a maximum expanding ratio not lower than 50 times, and are thermally expanded into hollow particulates having a repeated-compression durability not lower than 75 percent. The method of producing the heat-expandable microspheres includes the steps of dispersing an oily mixture containing a polymerizable component and the blowing agent in an aqueous dispersing medium containing a specific water-soluble compound and polymerizing the polymerizable component contained in the oily mixture.
摘要:
A method that heat-expandable microspheres includes the use of a shell of thermoplastic resin and a non-fluorine blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin. The method includes a step of dispersing an oily mixture containing a polymerizable component, the blowing agent, and a polymerization initiator containing a peroxydicarbonate in an aqueous dispersing medium to polymerize the polymerizable component contained in the oily mixture. The resultant heat-expandable microspheres have a shell which is less apt to become thinner than its theoretical value, contain minimum amount of resin particle inside their shell, and have excellent heat-expanding performance.
摘要:
A method that heat-expandable microspheres includes the use of a shell of thermoplastic resin and a non-fluorine blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin. The method includes, a step of dispersing an oily mixture containing a polymerizable component, the blowing agent, and a polymerization initiator containing a peroxydicarbonate in an aqueous dispersing medium to polymerize the polymerizable component contained in the oily mixture. The resultant heat-expandable microsphres have a shell which is less apt to become thinner than its theoretical value, contain minimum amount of resin particle inside their shell, and have excellent heat-expanding performance.
摘要:
Heat-expandable microspheres include a shell of thermoplastic resin and a blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin, have a maximum expanding ratio not lower than 50 times, and are thermally expanded into hollow particulates having a repeated-compression durability not lower than 75 percent. The method of producing the heat-expandable microspheres includes the steps of dispersing an oily mixture containing a polymerizable component and the blowing agent in an aqueous dispersing medium containing a specific water-soluble compound and polymerizing the polymerizable component contained in the oily mixture.
摘要:
The present invention provides heat-expanded microspheres having high packing efficiency, and a production method thereof. The heat-expanded microspheres are produced by expanding heat-expandable microspheres, which comprise shell of thermoplastic resin and a blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin and have an average particle size from 1 to 100 micrometer, at a temperature not lower than their expansion initiating temperature, and the heat-expanded microspheres result in a void fraction not higher than 0.70.
摘要:
Heat-expanded microspheres having high packing efficiency are produced by expanding heat-expandable microspheres, which include a shell of thermoplastic resin and a blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin and have an average particle size from 1 to 100 micrometer, at a temperature not lower than their expansion initiating temperature, and the heat-expanded microspheres result in a void fraction not higher than 0.70.