摘要:
An object of the present invention is to provide a structure which prevents a particulate contaminant and a liquid contaminant on which centrifugal separation hardly works, from arriving at a sensor element part. In order to attain the above described object, in a heat resistor type air flow rate measuring device which includes an auxiliary passage taking in a part of a fluid flowing in a main passage, and a plate-shaped sensor element installed in the aforesaid auxiliary passage and for detecting a flow rate of the fluid, and is a heat resistor type flow rate measuring device having an auxiliary passage formed along a curved line at 90° or more in an auxiliary passage portion at an upstream side from the plate-shaped sensor element, the aforesaid auxiliary passage is formed along a curved line at 90° or more on a phantom plane orthogonal to a sensor formation surface of the plate-shaped sensor element and parallel with a flow, and a sensor formation surface side and a rear side of the plate-shaped sensor element have gaps from an auxiliary passage wall surface.
摘要:
An object of the present invention is to provide a structure which prevents a particulate contaminant and a liquid contaminant on which centrifugal separation hardly works, from arriving at a sensor element part. In order to attain the above described object, in a heat resistor type air flow rate measuring device which includes an auxiliary passage taking in a part of a fluid flowing in a main passage, and a plate-shaped sensor element installed in the aforesaid auxiliary passage and for detecting a flow rate of the fluid, and is a heat resistor type flow rate measuring device having an auxiliary passage formed along a curved line at 90° or more in an auxiliary passage portion at an upstream side from the plate-shaped sensor element, the aforesaid auxiliary passage is formed along a curved line at 90° or more on a phantom plane orthogonal to a sensor formation surface of the plate-shaped sensor element and parallel with a flow, and a sensor formation surface side and a rear side of the plate-shaped sensor element have gaps from an auxiliary passage wall surface.
摘要:
An air flow measuring instrument, comprising: an auxiliary passage 8 arranged inside a main passage through which fluid flows, a tabular member 5 on which a pattern of a heating resistor for measuring an air flow is provided on one face 5a, the tabular member being disposed inside the auxiliary passage so that the one face 5a on which the heating resistor pattern of the tabular member is provided is disposed along a flow of fluid inside the auxiliary passage 8, a heating resistor pattern-side fluid passage 8a portion formed so that the fluid flows between the face 5a and a passage-forming surface 8d of the auxiliary passage, and a back-surface 8b side fluid passage portion formed so that fluid flows between a face 5b on a side opposite to the face of the tabular member and the passage-forming surface of the auxiliary passage. Guidance portion 13 guiding dust that collides against the end portion to back-surface side fluid passage portion 8b side is provided on upstream-side end of tabular member.
摘要:
A plate-shaped board is arranged so that fluid passages are respectively formed at a sensor-element mounting surface side of the plate-shaped board and at a backside surface side thereof being opposed to the sensor-element mounting surface side, a curved passage portion is provided which is located upstream of the plate-shaped board and changes its direction so as to form a curved line, and the curved passage portion has an outer-side wall surface including a sloping portion that slopes so that, of two edge portions of the outer-side wall surface in a direction perpendicular to board surfaces of the plate-shaped board, the edge portion located on a sidewall surface, facing the sensor-element mounting surface, of the curved passage portion is positioned closer to an inner wall surface of the curved passage portion than the edge portion located on a sidewall surface opposed to the first sidewall surface, along the sidewall surfaces.
摘要:
An air flow measuring instrument, comprising: an auxiliary passage 8 arranged inside a main passage through which fluid flows, a tabular member 5 on which a pattern of a heating resistor for measuring an air flow is provided on one face 5a, the tabular member being disposed inside the auxiliary passage so that the one face 5a on which the heating resistor pattern of the tabular member is provided is disposed along a flow of fluid inside the auxiliary passage 8, a heating resistor pattern-side fluid passage 8a portion formed so that the fluid flows between the face 5a and a passage-forming surface 8d of the auxiliary passage, and a back-surface 8b side fluid passage portion formed so that fluid flows between a face 5b on a side opposite to the face of the tabular member and the passage-forming surface of the auxiliary passage. Guidance portion 13 guiding dust that collides against the end portion to back-surface side fluid passage portion 8b side is provided on upstream-side end of tabular member.
摘要:
Technique of suppressing performance variations for each flow sensor is provided. In a flow sensor FS1 of the present invention, a part of a semiconductor chip CHP1 is configured to be covered with resin (MR) in a state in which a flow sensing unit (FDU) formed on a semiconductor chip CHP1 is exposed. Since an upper surface SUR(MR) of the resin (MR) is higher than an upper surface SUR(CHP) of the semiconductor chip (CHP1) by sealing the resin (MR) on a part of the upper surface SUR(CHP) of the semiconductor chip CHP1 in a direction parallel to an air flow direction, the air flow around the flow sensing unit (FDU) can be stabilized. Further, interface peeling between the semiconductor chip (CHP1) and the resin (MR) can be prevented by an increase of contact area between the semiconductor chip (CHP1) and the resin (MR).
摘要:
Technique of suppressing performance variations for each flow sensor is provided. In a flow sensor FS1 of the present invention, a part of a semiconductor chip CHP1 is configured to be covered with resin (MR) in a state in which a flow sensing unit (FDU) formed on a semiconductor chip CHP1 is exposed. Since an upper surface SUR(MR) of the resin (MR) is higher than an upper surface SUR(CHP) of the semiconductor chip (CHP1) by sealing the resin (MR) on a part of the upper surface SUR(CHP) of the semiconductor chip CHP1 in a direction parallel to an air flow direction, the air flow around the flow sensing unit (FDU) can be stabilized. Further, interface peeling between the semiconductor chip (CHP1) and the resin (MR) can be prevented by an increase of contact area between the semiconductor chip (CHP1) and the resin (MR).
摘要:
In a thermal type flow rate measurement apparatus comprising a sub-passage having a detour passage and a hole just before a flow rate measuring part, for preventing its output value from falling onto a negative side when the flow rate is abruptly changed, a slit is formed downstream of a flow rate detecting element located after the detour passage. The slit hole may be arranged between the flow rate detecting element and the outlet port part, and may be opened between a wall surface side and a recess part. Thereby, it is possible to prevent the output value from falling in the negative side upon rise-up thereof.
摘要:
In a thermal type flow rate measurement apparatus comprising a sub-passage having a detour passage and a hole just before a flow rate measuring part, for preventing its output value from falling onto a negative side when the flow rate is abruptly changed, a slit is formed downstream of a flow rate detecting element located after the detour passage. The slit hole may be arranged between the flow rate detecting element and the outlet port part, and may be opened between a wall surface side and a recess part. Thereby, it is possible to prevent the output value from falling in the negative side upon rise-up thereof.