摘要:
The present invention provides an apparatus for biogenic substance concentration measurement including: a cell including therein a first region, a second region, and a test solution retention space; a light source; a polarizing plate; and a photoreceiver, in which a plurality of first metallic nanorods each having a first antibody on a surface thereof are immobilized on the first region, a plurality of second metallic nanorods each having a second antibody on a surface thereof are immobilized on the second region, the respective long axes of the plurality of first metallic nanorods are aligned in the same direction, the respective long axes of the plurality of second metallic nanorods are aligned in the same direction, the long-axis direction of the first metallic nanorod is orthogonal to the long-axis direction of the second metallic nanorod, and at least one of the polarizing plate and the cell is capable of rotation with an optical axis as the rotation axis.
摘要:
One of the purposes of the present invention is to provide a biogenic substance concentration measuring method with improved measuring accuracy. An embodiment of the present invention provides a method for measuring a concentration of a biogenic substance contained in a living body, the method comprises steps of preparing a measuring device, wherein the measuring device comprises a light source, an optical filter, and a light receiver; irradiating a substantially-parallel light from the light source onto a particle chip implanted in a skin though a position on the surface of the skin to generate a reflected light; inclining the light source and calculating the concentration of the biogenic substance on the basis of the difference of signals before and after the inclination.
摘要:
The object of the present invention is to provide a method for measuring concentration of a biological substance contained in a living body in which deterioration of the accuracy due to the reflected light and the interruption component is suppressed. Linear-polarized light is emitted to a particle chip implanted in the skin with modulating its modulating direction continuously. A surface enhanced Raman scattering light of the biological substance generated on the particle chip. A concentration of the biological substance is calculated based on the received signal. The receiving signal satisfy the following equation (III). [Math. 3] R(t)=Am·sin(t)+D (III) R(t): received signal Am: amplitude t: time D: a constant number
摘要:
One of the purposes of the present invention is to provide a biogenic substance concentration measuring method with improved measuring accuracy. An embodiment of the present invention provides a method for measuring a concentration of a biogenic substance contained in a living body, the method comprises steps of preparing a measuring device, wherein the measuring device comprises a light source, an optical filter, and a light receiver; irradiating different focused lights from the light source onto a particle chip implanted in a skin though a position on the surface of the skin to generate corresponding reflected lights; calculating the concentration of the biogenic substance on the basis of the difference of signals obtained from the reflected lights.
摘要:
One of the purposes of the present invention is to provide a biogenic substance concentration measuring method with improved measuring accuracy. An embodiment of the present invention provides a method for measuring a concentration of a biogenic substance contained in a living body, the method comprises steps of preparing a measuring device, wherein the measuring device comprises a light source, an optical filter, and a light receiver; irradiating different focused lights from the light source onto a particle chip implanted in a skin though a position on the surface of the skin to generate corresponding reflected lights; calculating the concentration of the biogenic substance on the basis of the difference of signals obtained from the reflected lights.
摘要:
The present invention provides an apparatus for biogenic substance concentration measurement including: a cell including therein a first region, a second region, and a test solution retention space; a light source; a polarizing plate; and a photoreceiver, in which a plurality of first metallic nanorods each having a first antibody on a surface thereof are immobilized on the first region, a plurality of second metallic nanorods each having a second antibody on a surface thereof are immobilized on the second region, the respective long axes of the plurality of first metallic nanorods are aligned in the same direction, the respective long axes of the plurality of second metallic nanorods are aligned in the same direction, the long-axis direction of the first metallic nanorod is orthogonal to the long-axis direction of the second metallic nanorod, and at least one of the polarizing plate and the cell is capable of rotation with an optical axis as the rotation axis.
摘要:
A biogenic substance concentration measuring apparatus includes an optical measuring apparatus for measuring optical properties of a first substrate and a second substrate by using a cell for biogenic substance concentration measurement that includes: the first substrate on which a plurality of first metallic nanorods, each of which is modified with a substance that bonds specifically to a test substance, are immobilized such that the long axes thereof are aligned in the same direction; and the second substrate on which a plurality of second metallic nanorods, each of which is modified with a blocking substance, are immobilized such that the long axes thereof are aligned perpendicularly to the long axes of the first metallic nanorods on the first substrate, and calculates a biogenic substance concentration with high accuracy from the optical properties.
摘要:
The object of the present invention is to provide a method for measuring concentration of a biological substance contained in a living body in which deterioration of the accuracy due to the reflected light and the interruption component is suppressed. Linear-polarized light is emitted to a particle chip implanted in the skin with modulating its modulating direction continuously. A surface enhanced Raman scattering light of the biological substance generated on the particle chip. A concentration of the biological substance is calculated based on the received signal. The receiving signal satisfy the following equation: R(t)=Am ·sin(ωt)+D, where R(t): received signal, Am: amplitude, t: time, D: a constant number, and ω: angular speed.
摘要:
One of the purposes of the present invention is to provide a biogenic substance concentration measuring method with improved measuring accuracy. An embodiment of the present invention provides a method for measuring a concentration of a biogenic substance contained in a living body, the method comprises steps of preparing a measuring device, wherein the measuring device comprises a light source, an optical filter, and a light receiver; irradiating a substantially-parallel light from the light source onto a particle chip implanted in a skin though a position on the surface of the skin to generate a reflected light; inclining the light source and calculating the concentration of the biogenic substance on the basis of the difference of signals before and after the inclination.
摘要:
A device for measuring the concentration of a biological constituent based on infrared radiation emitted by a subject's eardrum with the influence of the eardrum's thickness taken into account is provided.The biological constituent concentration measuring device includes: a detecting section for detecting infrared radiation emitted by an eardrum; an acquisition section for acquiring thickness information about the thickness of the eardrum; and a computing section for figuring out the concentration of the biological constituent based on the infrared radiation detected and the thickness information acquired. The infrared radiation emitted by the eardrum is subject to the influence of the subject's eardrum thickness. Therefore, by calculating the biological constituent concentration based on not only the infrared radiation detected but also the eardrum thickness information, the biological constituent concentration can be measured highly accurately.