摘要:
Provided is a radiation detector, including: a two-dimensional light receiving element including a plurality of pixels; and a scintillator layer having multiple scintillator crystals two-dimensionally arranged on a light receiving surface of the two-dimensional light receiving element, in which: the scintillator crystal includes two crystal phases, which are a first crystal phase including a material including a plurality of columnar crystals extending in a direction perpendicular to the light receiving surface of the two-dimensional light receiving element and having a refractive index n1, and a second crystal phase including a material existing between the plurality of columnar crystals and having a refractive index n2; and a material having a refractive index n3 is placed between adjacent scintillator crystals, the refractive index n3 satisfying a relationship of one of n1≦n3≦n2 and n2≦n3≦n1.
摘要:
Provided is a radiation detector, including: a two-dimensional light receiving element including a plurality of pixels; and a scintillator layer having multiple scintillator crystals two-dimensionally arranged on a light receiving surface of the two-dimensional light receiving element, in which: the scintillator crystal includes two crystal phases, which are a first crystal phase including a material including a plurality of columnar crystals extending in a direction perpendicular to the light receiving surface of the two-dimensional light receiving element and having a refractive index n1, and a second crystal phase including a material existing between the plurality of columnar crystals and having a refractive index n2; and a material having a refractive index n3 is placed between adjacent scintillator crystals, the refractive index n3 satisfying a relationship of one of n1≦n3≦n2 and n2≦n3≦n1.
摘要:
Provided is a radiation detecting device, including: a scintillator which emits light when radiation is irradiated thereto; and a photosensor array having light receiving elements for receiving the emitted light which are two-dimensionally arranged, in which: the scintillator has a phase separation structure for propagating the light emitted inside the scintillator in a light propagating direction, the phase separation structure being formed by embedding multiple columnar portions formed of a first material in a second material; the radiation is irradiated to the scintillator from a direction which is not in parallel to the light propagating direction; and the light emitted inside the scintillator is propagated through the scintillator in the light propagating direction and is received by the photosensor array which is placed so as to face an end face of the scintillator.
摘要:
Provided is a radiation detecting device, including: a scintillator which emits light when radiation is irradiated thereto; and a photosensor array having light receiving elements for receiving the emitted light which are two-dimensionally arranged, in which: the scintillator has a phase separation structure for propagating the light emitted inside the scintillator in a light propagating direction, the phase separation structure being formed by embedding multiple columnar portions formed of a first material in a second material; the radiation is irradiated to the scintillator from a direction which is not in parallel to the light propagating direction; and the light emitted inside the scintillator is propagated through the scintillator in the light propagating direction and is received by the photosensor array which is placed so as to face an end face of the scintillator.
摘要:
There has not been a DC drive type light emitting device capable of providing high brightness. The present invention provides a light emitting device, including: a pair of electrodes; a light emitter placed between the electrodes; and a semiconductor laminated to be adjacent to the light emitter, in which the semiconductor contains one of a chalcopyrite and an oxychalcogenide.
摘要:
To provide a DC drive type inorganic light emitting device excellent in luminous efficiency, provided is a light emitting device, including: a substrate; and a first layer and a second layer laminated on the substrate, in which the second layer is formed of a first portion containing Zn and at least one element chosen from S and Se as its constituent elements; and a second portion containing at least one element chosen from Cu and Ag and at least one element chosen from S and Se as its constituent elements; the first layer is made of a light emitting layer formed of at least one element chosen from S and Se and of Zn; and, in the second layer, the second portion has a cross section parallel to the substrate which tapers toward the first layer.
摘要:
A light emitting device includes a substrate, a first electrode layer, a light emitting layer, a structure layer and a second electrode layer. The structure layer has first domains composed of a first material having a columnar shape and second domains composed of a second material, and on the substrate the structure layer and the light emitting layer are laminated between the first electrode layer and the second electrode layer.
摘要:
A method for manufacturing a thin film transistor containing an channel layer 11 having indium oxide, including forming an indium oxide film as an channel layer and subjecting the formed indium oxide film to an annealing in an oxidizing atmosphere.
摘要:
Provided is an oxynitride semiconductor comprising a metal oxynitride. The metal oxynitride contains Zn and at least one element selected from the group consisting of In, Ga, Sn, Mg, Si, Ge, Y, Ti, Mo, W, and Al. The metal oxynitride has an atomic composition ratio of N, N/(N+O), of 7 atomic percent or more to 80 atomic percent or less.
摘要:
Disclosed herein is a field-effect transistor comprising a channel comprised of an oxide semiconductor material including In and Zn. The atomic compositional ratio expressed by In/(In+Zn) is not less than 35 atomic % and not more than 55 atomic %. Ga is not included in the oxide semiconductor material or the atomic compositional ratio expressed by Ga/(In+Zn+Ga) is set to be 30 atomic % or lower when Ga is included therein. The transistor has improved S-value and field-effect mobility.