摘要:
An object of the present invention is to reduce the generation of smell by sterilization and to improve the taste in carrying out the sterilization of milk or the like, and the method of the present invention is a method where sterilization is carried out after the dissolved oxygen in milk or the like is substituted with nitrogen gas, and the method is characterized in that a step in which nitrogen gas is directly mixed with and dispersed in milk or the like and a step in which milk or the like with which nitrogen gas is not mixed is sprayed from a nozzle(s) to the top of milk or the like, with and in which nitrogen gas has been mixed and dispersed, stored in a nitrogen gas substituting tank under a nitrogen gas atmosphere, are jointly used whereby the dissolved oxygen amount in the milk or the like is reduced by substitution of the dissolved oxygen with nitrogen gas, followed by subjecting to sterilization.
摘要:
An object of the present invention is to reduce the generation of smell by sterilization and to improve the taste in carrying out the sterilization of milk or the like, and the method of the present invention is a method where sterilization is carried out after the dissolved oxygen in milk or the like is substituted with nitrogen gas, and the method is characterized in that a means in which nitrogen gas is directly mixed with and dispersed in milk or the like and a means in which milk or the like with which nitrogen gas is not mixed is sprayed from a nozzle(s) to the top of milk or the like, with and in which nitrogen gas has been mixed and dispersed, stored in a nitrogen gas substituting tank under a nitrogen gas atmosphere, are jointly used whereby the dissolved oxygen amount in the milk or the like is reduced by means of substitution of the dissolved oxygen with nitrogen gas, followed by subjecting to sterilization.
摘要:
According to one embodiment, an electrode includes a current collector, an active material-containing layer, a first peak, a second peak and a pore volume. The active material-containing layer contains an active material having a lithium absorption potential of 0.4 V (vs. Li/Li+) or more. The first peak has a mode diameter of 0.01 to 0.1 μm in a diameter distribution of pores detected by mercury porosimetry. The second peak has a mode diameter of 0.2 μm (exclusive) to 1 μm (inclusive) in the diameter distribution of pores. The pore volume detected by the mercury porosimetry is within a range of 0.1 to 0.3 mL per gram of a weight of the electrode excluding a weight of the current collector.
摘要翻译:根据一个实施例,电极包括集电器,含活性材料的层,第一峰,第二峰和孔体积。 含活性物质的层含有锂吸收电位为0.4V(相对于Li / Li +)以上的活性物质。 在通过水银孔率法检测的孔的直径分布中,第一峰的模式直径为0.01〜0.1μm。 第二峰在孔的直径分布中的模式直径为0.2μm(不包括)至1μm。 通过水银孔率法检测的孔体积在0.1至0.3mL /克重量的电极之外,不包括集电体的重量。
摘要:
The non-aqueous electrolyte battery includes an outer case, a positive electrode housed in the outer case, a negative electrode housed in the outer case such that the negative electrode is separated from the positive electrode, and a non-aqueous electrolyte accommodated in the outer case. The negative electrode comprises a current collector and negative electrode layer formed on one surface or both surfaces of the current collector. The negative electrode layer includes at least one main negative electrode layer which is formed on the surface of the current collector and contains a first active material, and a surface layer which is formed on the surface of the main negative electrode layer and contains a second active material different from the first active material, the second active material being a lithium titanium composite oxide having a spinel structure.
摘要:
According to one embodiment, a nonaqueous electrolyte battery is provided. The battery includes a positive electrode, a negative electrode, and a nonaqueous electrolyte. The positive electrode includes lithium iron phosphate having an olivine structure as positive electrode active material. The negative electrode includes lithium titanate having a spinel structure and a monoclinic β-type titanium complex oxide as a negative electrode active material.
摘要:
According to one embodiment, a battery electrode includes an active material layer and a current collector is provided. The active material layer contains particles of a monoclinic β-type titanium complex oxide and particles of a lithium titanate having a spinel structure. When a particle size frequency distribution of particles contained in the active material layer is measured by the laser diffraction and scattering method, a first peak P1 appears in a range of 0.3 μm to 3 μm and a second peak P2 appears in a range of 5 μm to 20 μm in the frequency distribution diagram. The ratio FP1/FP2 of the frequency FP1 of the first peak P1 to the frequency FP2 of the second peak P2 is 0.4 to 2.3.
摘要:
According to one embodiment, a negative electrode active material for nonaqueous electrolyte battery includes a titanium oxide compound having a crystal structure of monoclinic titanium dioxide. When a monoclinic titanium dioxide is used as the active material, the effective capacity is significantly lower than the theoretical capacity though the theoretical capacity was about 330 mAh/g. The invention comprises a titanium oxide compound which has a crystal structure of monoclinic titanium dioxide and a (001) plane spacing of 6.22 Å or more in the powder X-ray diffraction method using a Cu—Kα radiation source, thereby making an attempt to improve effective capacity.
摘要:
According to one embodiment, an active material includes a monoclinic system β-type titanium composite oxide. The monoclinic system β-type titanium composite oxide includes a first element including at least one of Mo and W and satisfies the following formula (1): B>A (1) In the formula, A is an intensity of a peak which is derived from (110) plane of the monoclinic system β-type titanium composite oxide in a wide-angle X-ray diffraction pattern. B is an intensity of a peak which is derived from (002) plane of the monoclinic system β-type titanium composite oxide in the wide-angle X-ray diffraction pattern.
摘要:
According to one embodiment, a non-aqueous electrolyte secondary battery includes a positive electrode which inserts and extracts lithium, a negative electrode containing a negative electrode material including a porous conductive particle and an active material formed on the surface and/or within the pores of the porous conductive particle and composed of a lithium titanium complex oxide having at least one structure selected from the group consisting of nanotubes and nanowires, the lithium titanium complex oxide being expressed by a general formula LixTiO2 (where 0≦x
摘要翻译:根据一个实施方案,非水电解质二次电池包括插入和提取锂的正极,含有包含多孔导电颗粒的负极材料的负极和形成在表面上和/或孔内的活性材料 所述多孔导电粒子由具有选自由纳米管和纳米线组成的组中的至少一种结构的锂钛复合氧化物构成,所述锂钛复合氧化物由通式LixTiO 2(其中0&lt; 1lE; x <1)表示, 非水电解质。
摘要:
According to one embodiment, a negative electrode active material for a nonaqueous electrolyte battery is provided. The active material includes a titanium oxide compound having a crystal structure of a monoclinic titanium dioxide and having a crystallite, the crystallite having a crystallite size of 5 to 25 nm when it is calculated by using the half width of the peak of a (110) plane obtained by a powder X-ray diffraction (XRD) method using a Cu—Kα ray.