摘要:
The present invention provides an apparatus for converting image data, including a block extraction unit extracts a class tap from a composite signal. A pixel-location-mode output unit determines a pixel location mode from the extracted class tap, and outputs it to a coefficient memory. A coefficient calculation unit acquires a seed coefficient from a seed coefficient memory to determine a predictive coefficient based on a transform method selection signal input from a designation unit, and stores the result into the coefficient memory. The coefficient memory supplies a predictive coefficient corresponding to the pixel location mode to a predictive calculation unit. A block extraction unit extracts a predictive tap from the composite signal, and outputs the result to the predictive calculation unit. The predictive calculation unit outputs a component signal or a transformed component signal based on the predictive tap and the predictive coefficient.
摘要:
The present invention relates to a signal processing apparatus and method, a recording medium, and a program, in which a more preferable class can be easily selected. A region extracting unit 151 extracts a class tap from an input composite video signal, and pattern detecting units 152 to 154 detect patterns for classes by using different predetermined methods. A class-code determining unit 155 determines a class based on information from an evaluation table 156, and a coefficient memory 157 supplies a predictive coefficient corresponding to the class to a predictive computing unit 159. The predictive computing unit 159 performs predictive computing based on a predictive tap supplied from a region extracting unit 158 and the predictive coefficient supplied from the coefficient memory 157, so that a component Y signal is generated and is output therefrom. The present invention can be applied to a television receiver.
摘要:
A device for processing an image signal that can improve an image quality of a zoom image, in which based on an input image signal, an image-signal-processing section produces an output image signal to display the zoom image with an expansion rate of an image being changed consecutively around an arbitrary center point specified by the user. Each pixel data of the output image signal is calculated by using coefficient data produced by a coefficient production circuit that produces the coefficient data based on not only phase information of each pixel but also resolution adjustment information and noise suppression degree adjustment information that the image quality adjustment information generation circuit generates based on the expansion rate of the image, a change rate (K) of the expansion rate of the image, and characteristics information of the image.
摘要:
A device for processing an image signal that can improve an image quality of a zoom image in which based on an input image signal, an image-signal-processing section produces an output image signal to display the zoom image with an expansion rate of an image being changed consecutively around an arbitrary center point specified by the user. Each pixel data of the output image signal is calculated by using coefficient data produced by a coefficient production circuit that produces the coefficient data based on not only phase information of each pixel but also resolution adjustment information and noise suppression degree adjustment information that the image quality adjustment information generation circuit generates based on the expansion rate of the image, a change rate (K) of the expansion rate of the image, and characteristics information of the image.
摘要:
This invention relates to an apparatus for processing an information signal etc. that, when converting, for example, SD signal into HD signal, enables well to be obtained pixel data of HD signal no matter whether the dynamic range DR is large or small. DR in a class tap is detected. If DR≧Th, items of pixel data y1-a−y4-a calculated by using item of coefficient data Wi-a corresponding to a class code Ca are estimated as items of pixel data of HD signal. If DR
摘要:
A device generates coefficient data of an estimating equation for converting a first information signal to a second information signal. The device performs decimation on a teacher signal to generate a student signal and acquires plural training data items from the teacher signal corresponding to the second information signal and the student signal corresponding to the first information signal. For each training data item, a similarity determination unit acquires the similarity of the student signal with respect to the first information signal corresponding to a second information signal at a position of interest. Coefficient seed data, which are coefficient data of a generation equation including the similarity as a parameter, are determined using the training data items and the similarity. A coefficient data computing unit determines, based on the generation equation, coefficient data of the estimating equation using the coefficient seed data and a similarity value indicating the highest similarity.
摘要:
A pattern matching section compares reference taps supplied by one area extracting section with a reference tap component of a training pair pre-stored in a training-pair storing section, selects a training pair including a reference tap component having highest similarity to the reference taps, and supplies the selected training pair to a normal-equation generating section. Training pairs stored in the training-pair storing section include a SD signal and HD signal. A prediction-coefficient determining section obtains prediction coefficients by solving normal equations generated by the normal-equation generating section. A prediction calculating section produces a HD signal by applying the prediction coefficients to prediction taps extracted by another area extracting section.
摘要:
Standard Definition signals are divided into blocks at a tap extracting unit, and pixel data contained in each block is extracted as a class tap. A class classification unit obtains class code based on the pixel data contained in the class tap. An auxiliary data generating unit generates auxiliary data regarding conversion into High Definition signals, based on the class tap extracted by the tap extracting unit. A data generation processing unit performs processing based on the class code and the auxiliary data, thereby yielding excellent High Definition signals.
摘要:
A class configuration generation unit generates (n−1) number of class configurations each of which is comprised of i number of the already selected features plus a feature selected from the remaining (n−i) number of the features (both of n and i are integers). A class configuration selection unit selects an optimal class configuration from the (n−i) number of the class configurations using an arbitrary evaluation value. The features used in the class configuration selected by the selection unit are used as the already selected features in the generation unit. The operations by the generation unit and the selection unit are repeated with values of i sequentially varying from 0 to r−1, thereby generating a class configuration comprised of r number of the features.
摘要:
An NTSC signal is supplied to a first area extracting circuit and a second area extracting circuit. The first area extracting circuit extracts class taps from the NTSC signal. The second area extracting circuit extracts predictive taps from the NTSC signal. The first area extracting circuit extracts pixels in predetermined positions from same phase pixels as a considered pixel. Based on level differences between extracted pixels, a pattern detecting section performs a class categorization. A class code determining section generates class codes based on the result of the class categorization and supplies the generated class codes to a coefficient memory. The coefficient memory outputs pre-stored predictive coefficients based on the class codes to a predictive calculating section. The predictive calculating section performs a sum of product calculation of pixel data as predictive taps received from the first area extracting circuit and the predictive coefficients received from the second area extracting circuit and generates for example a component signal Y with the result of the sum of product calculation.