Abstract:
Systems and methods provide for a nitrogen generation and oxygen distribution system. According to one aspect, the system includes an NGS and an oxygen distribution processor coupled to the NGS. The NGS creates nitrogen enriched air as the primary product for fuel tank use, and oxygen enriched air as a secondary product. The oxygen distribution processor is operative to determine a number of flight parameters, and from those parameters, provide an oxygen distribution command to an oxygen distribution valve in order to prevent the oxygen enriched air from being distributed, to route the oxygen enriched air to the ambient environment, or to route the oxygen enriched air to an aircraft engine to increase combustion efficiency.
Abstract:
An indoor positioning system employs a target sensor attached to a structure to form an anchor node. A coordinate system of the target sensor is aligned with a coordinate system of the structure. A handheld device is configured to transmit a signal to an object of interest and, based on a return signal from the object of interest and communication with the target sensor, generate a description of a location of the object of interest, the location description being provided in the coordinate system of the structure.
Abstract:
A system for providing an oxygen enriched localized environment in a user compartment on an aircraft that can include a gas separation system having an oxygen output channel that outputs a flow of oxygen enriched air, and a duct network coupled to the oxygen output channel and to direct the flow of oxygen enriched air to the user compartment, localized volume.
Abstract:
An aircraft air supply system may include a primary duct to supply a primary air flow to a flight deck of an aircraft. A nitrogen generating system may be configured for generating nitrogen enriched air and oxygen enriched air. A secondary duct may be provided for channeling the oxygen enriched air from the nitrogen generating system to the primary duct. The flow of the oxygen enriched air into the primary duct and to the flight deck may be controlled to reduce an effective altitude of the flight deck.
Abstract:
An electrostatic bypass system and method as disclosed utilizes corona wires extending laterally across the flow path upstream of the section of the flow path of concern. The corona wires can be arranged to form a mesh across the flow path and can be powered by a power source to ionize the air surrounding the wires to thereby apply an electrostatic charge to the particulates as they pass through an ionized section of air proximate the wires.
Abstract:
An electrostatic bypass system and method as disclosed utilizes corona wires extending laterally across the flow path upstream of the section of the flow path of concern. The corona wires can be arranged to form a mesh across the flow path and can be powered by a power source to ionize the air surrounding the wires to thereby apply an electrostatic charge to the particulates as they pass through an ionized section of air proximate the wires.
Abstract:
A system and method for a customized ambient lighting environment for individuals in vehicles travelling rapidly across multiple time zones, that can be automated and/or based on user input and which allows each user to be exposed to light in accordance to selected preferences and circumstances, in order to begin acclimating the user to a new time zone, or avoid acclimating to a new time zone, and/or otherwise mitigate circadian desynchrony.
Abstract:
A ram air system includes a bay comprising an exterior wall defining an interior volume that at least partially encloses a ram air duct. The ram air duct includes an outlet configured to discharge an exhaust airflow at a first temperature. At least one of the exterior wall and the ram air duct defines an aperture therein providing for flow communication between the bay interior volume and the exhaust airflow such that cooling air flows from the interior volume to form a boundary layer between the exhaust airflow and the exterior wall downstream of the outlet. The boundary layer is at a second temperature that is lower than the first temperature.
Abstract:
Systems and methods provide for a nitrogen generation and oxygen distribution system. According to one aspect, the system includes an NGS and an oxygen distribution processor coupled to the NGS. The NGS creates nitrogen enriched air as the primary product for fuel tank use, and oxygen enriched air as a secondary product. The oxygen distribution processor is operative to determine a number of flight parameters, and from those parameters, provide an oxygen distribution command to an oxygen distribution valve in order to prevent the oxygen enriched air from being distributed, to route the oxygen enriched air to the ambient environment, or to route the oxygen enriched air to an aircraft engine to increase combustion efficiency.
Abstract:
A ram air system includes a bay comprising an exterior wall defining an interior volume that at least partially encloses a ram air duct. The ram air duct includes an outlet configured to discharge an exhaust airflow at a first temperature. At least one of the exterior wall and the ram air duct defines an aperture therein providing for flow communication between the bay interior volume and the exhaust airflow such that cooling air flows from the interior volume to form a boundary layer between the exhaust airflow and the exterior wall downstream of the outlet. The boundary layer is at a second temperature that is lower than the first temperature.