Abstract:
A method of manufacturing a panel assembly includes supporting the panel assembly in a free state using a holding fixture. The panel assembly has a skin panel, and sacrificial material coupled to a skin panel inner surface. The method includes acquiring a free state outer surface contour of the panel assembly by scanning a skin panel outer surface while the panel assembly is supported by the holding fixture. The method also includes developing a numerically controlled (NC) machining program having cutter paths configured for machining the interface locations to an inner surface contour that reflects nominal thicknesses of the panel assembly based off of the free state outer surface contour. In addition, the method includes machining the sacrificial material at the interface locations by moving a cutter along the cutter paths while the panel assembly is supported by the holding fixture.
Abstract:
A method of manufacturing a panel assembly includes supporting the panel assembly in a free state using a holding fixture. The panel assembly has a skin panel, and sacrificial material coupled to a skin panel inner surface. The method includes acquiring a free state outer surface contour of the panel assembly by scanning a skin panel outer surface while the panel assembly is supported by the holding fixture. The method also includes developing a numerically controlled (NC) machining program having cutter paths configured for machining the interface locations to an inner surface contour that reflects nominal thicknesses of the panel assembly based off of the free state outer surface contour. In addition, the method includes machining the sacrificial material at the interface locations by moving a cutter along the cutter paths while the panel assembly is supported by the holding fixture.
Abstract:
The application is directed to methods and devices for estimating corrosion of a material. One of the methods includes obtaining data regarding corrosion. The data is obtained from various sources, such as but not limited to sensors and observational data. The data is then trained to provide for a more complete data set. The trained data is then used to estimate the expected amount of corrosion for a given situation.
Abstract:
A structure is provided having a substrate and a direct write deposited lead zirconate titanate (PZT) nanoparticle ink based piezoelectric sensor assembly deposited on the substrate. The PZT nanoparticle ink based piezoelectric sensor assembly has a PZT nanoparticle ink based piezoelectric sensor with a PZT nanoparticle ink deposited onto the substrate via an ink deposition direct write printing process. The PZT nanoparticle ink does not require a high temperature sintering/crystallization process once deposited. The PZT nanoparticle ink based piezoelectric sensor assembly further has a power and communication wire assembly coupled to the PZT nanoparticle ink based piezoelectric sensor. The power and communication wire assembly has a conductive ink deposited onto the substrate via the ink deposition direct write printing process.
Abstract:
A structure is provided having a substrate and a direct write deposited lead zirconate titanate (PZT) nanoparticle ink based piezoelectric sensor assembly deposited on the substrate. The PZT nanoparticle ink based piezoelectric sensor assembly has a PZT nanoparticle ink based piezoelectric sensor with a PZT nanoparticle ink deposited onto the substrate via an ink deposition direct write printing process. The PZT nanoparticle ink does not require a high temperature sintering/crystallization process once deposited. The PZT nanoparticle ink based piezoelectric sensor assembly further has a power and communication wire assembly coupled to the PZT nanoparticle ink based piezoelectric sensor. The power and communication wire assembly has a conductive ink deposited onto the substrate via the ink deposition direct write printing process.