摘要:
The optical waveguide system comprises a mode discriminating coupler and reflective mode coupling means. These components can be combined in a variety of ways to perform a variety of functions. Among them are drop multiplex devices, add multiplex devices, add/drop multiplex devices, and power combiners. The device combinations can have low loss as well as high reliability, the latter due to the robust structure of the devices.
摘要:
Embodiments of the invention include an optical fiber system and method for separating the different wavelengths of transmitted light transmitted therethrough and for monitoring the respective optical power in the separated spectral components. More specifically, embodiments of the invention scan or modify the physical parameters of in-fiber gratings that couple light between spatially different modes of light within a wavelength-division-multiplexed (WDM) optical fiber system, separate the spatial modes using a mode-discriminating device (MDD) and monitor or detect the separated spectral components using a conventional or other suitable detector. By scanning the in-fiber gratings, the peak wavelength of coupling between two dissimilar modes is modified, thus allowing control of the coupling within the fiber optic system. Scanning the grating is performed, e.g., by changing the temperature or modifying the physical dimensions of the grating. In one embodiment, the system employs a long-period grating that couples light between two co-propagating, spatially different modes. In an alternative embodiment, the system uses a short-period grating that couples light between a forward propagating mode and a spatially dissimilar, backward propagating mode.
摘要:
In accordance with the invention, an optical fiber is provided with a metal coating of controlled variable thickness by the steps of disposing the fiber in position for receiving coating metal from a metal source, and depositing metal while moving a shadow mask between the fiber and the source to provide patterning of deposited metal. Advantageously, the mask is translated at a constant velocity perpendicular to the fiber. The method is particularly useful for the fabrication of adjustable Bragg gratings.
摘要:
A hybrid, thin-film, optical waveguide structure has a substrate with a grating coupler formed thereon. A thin-film waveguide film is formed on the substrate and has a tapered portion overlaying the grating.
摘要:
Applicants have discovered that the intermodal beat noise of a fiber multimode laser can be substantially reduced by providing the fiber with an output coupler of broadened bandwidth. In a preferred embodiment, a reduced-noise, high power light source comprises a cladding pumped fiber laser having a chirped output grating. Experiments show that increasing the output bandwidth from 0.254 to 0.577 nm reduces the relative intensity-to-noise ratio 10 dB in a Nd-doped fiber laser. Increasing the bandwidth from 0.2 nm to 0.3 nm in a Yb-doped laser similarly reduces the noise by 12 dB.
摘要:
In accordance with the invention, a tunable fiber grating comprises a fiber grating secured between a pair of magnets so that magnetic force (repulsive or attractive) applied to the magnets is transmitted to the grating. An electromagnet is disposed adjacent the magnets for applying the field to magnetize them. Control of the current applied to the electromagnet permits control of the force transmitted to the fiber grating and, thus, control of the grating strain, spacing and reflection frequency. In a preferred embodiment the electromagnet is actuated to produce magnetic pulses which control the remanent force between the two magnets, eliminating the need for continuous power. An add/drop multiplexer employing the tunable gratings is described.
摘要:
The disclosed Mach-Zehnder (MZ)-type devices are planar waveguide devices, with interferometer arms of essentially equal length, with a maximum spacing between the arms (e.g., between the waveguide core centers) selected to make possible simultaneous exposure of both arms to refractive index-altering radiation. Exemplarily the maximum spacing is in the range 20-100 .mu.m. The simultaneous exposure of both waveguides makes it possible to form gratings of essential equal strength, such that typically no individual trimming is required. The resulting devices (typically add-drop filters) are substantially less sensitive to environmental changes (e.g., temperature gradients, mechanical vibrations) than prior art fiber-based devices, and are advantageously used in, for instance, WDM optical communication systems.
摘要:
A dispersive optical waveguide tap comprises a blazed refractive index grating in the core of the waveguide, coupling means, focusing means and utilization means. The grating is selected such that guided mode light of predetermined wavelength will, in the absence of the coupling means, be directed into one or more cladding modes of the waveguide. The presence of the coupling means, in optical co-operation with the waveguide, changes the guiding conditions such that the cladding modes are substantially eliminated from a portion of the waveguide that includes the cladding, whereby the grating directs the guided mode light into one or more radiation modes. The blaze angle typically is .ltoreq.15.degree.. The focusing means serve to bring the radiation mode light substantially to a focus in at least one dimension, the focal point (or line) depending on the wavelength of the light. The utilization means exemplarily comprise an array of photodetectors, and the coupling means exemplarily comprise an appropriately shaped glass member and index matching means. Dispersive waveguide taps are advantageously used in WDM optical communication systems, e.g., to provide status information (e.g., channel wavelength, channel power, including presence or absence of a channel) to, e.g., a system maintenance unit. The status information facilitates maintenance of operating conditions by conventional feedback control. Any optical element that can bring the tapped radiation to a focus on the utilization means can serve as a focusing element. Exemplary focusing elements are optical lenses (cylindrical or non-cylindrical), diffraction gratings, volume gratings (holograms), and combinations thereof.
摘要:
A dispersive optical waveguide tap comprises a blazed and chirped refractive index grating in the core of the waveguide, coupling means and utilization means. The grating is selected such that guided mode light of predetermined wavelength will, in the absence of the coupling means, be directed into one or more cladding modes of the waveguide. The presence of the coupling means in optical co-operation with the waveguide, changes the guiding conditions such that the cladding modes are substantially eliminated from a portion of the waveguide that includes the cladding, whereby the grating directs the guided mode light into one or more radiation modes. The blaze angle typically is .ltoreq.15.degree.. The chirp serves to bring the radiation mode light substantially to a focus in at least one dimension, the focal point (or line) depending on the wavelength of the light. The utilization means exemplarily comprise an array of photodetectors, and the coupling means exemplarily comprise an appropriately shaped glass member and index matching means. Dispersive waveguide taps are advantageously used in WDM optical communication systems, e.g., to provide status information (e.g., channel wavelength, channel power, including presence or absence of a channel) to, e.g., a system maintenance unit. The status information facilitates maintenance of operating conditions by conventional feedback control.
摘要:
Reflective mode coupling refractive index gratings are disclosed. The gratings can couple light of wavelength .lambda..sub.i in a fundamental spatial mode of the waveguide (e.g., LP.sub.01 to a reflected higher order spatial mode (e.g., LP.sub.11), substantially without reflection of any light of wavelength .lambda..sub.j .noteq..lambda..sub.i in a spectral range .DELTA..lambda..ltoreq.0.01 .lambda..sub.i. The mode coupling gratings (MCGs) can find a variety of uses in optical waveguide systems. Exemplarily, an MCG can serve as a wavelength-dependent loss element with abrupt (e.g., .about.1 nm) spectral dependence. However, a chirped grating with or without strength modulation can yield an MCG having relatively wide spectral dependence, including variable loss over a relatively wide (e.g., .about.10 nm) spectral range. Both types of MCGs are advantageously used in, for instance, optical waveguide amplifiers.