摘要:
Aerosol and hydrosol particle detection systems without knowledge of a location and velocity of a particle passing through a volume of space, are less efficient than if knowledge of the particle location is known.An embodiment of a particle position detection system capable of determining an exact location of a particle in a fluid stream is discussed. The detection system may employ a patterned illuminating beam, such that once a particle passes through the patterned illuminating beam, a light scattering is produced. The light scattering defines a temporal profile that contains measurement information indicative of an exact particle location.However, knowledge of the exact particle location has several advantages. These advantages include correction of systematic particle measurement errors due to variability of the particle position within the sample volume, targeting of particles based on position, capture of particles based on position, reduced system energy consumption and reduced system complexity.
摘要:
Aerosol and hydrosol particle detection systems without knowledge of a location and velocity of a particle passing through a volume of space, are less efficient than if knowledge of the particle location is known.An embodiment of a particle position detection system capable of determining an exact location of a particle in a fluid stream is discussed. The detection system may employ a patterned illuminating beam, such that once a particle passes through the patterned illuminating beam, a light scattering is produced. The light scattering defines a temporal profile that contains measurement information indicative of an exact particle location.However, knowledge of the exact particle location has several advantages. These advantages include correction of systematic particle measurement errors due to variability of the particle position within the sample volume, targeting of particles based on position, capture of particles based on position, reduced system energy consumption and reduced system complexity.
摘要:
Aerosol and hydrosol particle detection systems without knowledge of a location and velocity of a particle passing through a volume of space, are less efficient than if knowledge of the particle location is known. An embodiment of a particle position detection system capable of determining an exact location of a particle in a fluid stream is discussed. The detection system may employ a patterned illuminating beam, such that once a particle passes through the patterned illuminating beam, a light scattering is produced. The light scattering defines a temporal profile that contains measurement information indicative of an exact particle location. However, knowledge of the exact particle location has several advantages. These advantages include correction of systematic particle measurement errors due to variability of the particle position within the sample volume, targeting of particles based on position, capture of particles based on position, reduced system energy consumption and reduced system complexity.
摘要:
Particle detection systems without knowledge of a location and velocity of a particle passing through a volume of space, are less efficient than if knowledge of the particle location is known. An embodiment of a particle position detection system capable of determining an exact location of a particle in a fluid stream is discussed. The detection system may employ a patterned illuminating beam, such that once a particle passes through the various portions of the patterned illuminating beam, a light scattering is produced. The light scattering defines a temporal profile that contains measurement information indicative of an exact particle location. However, knowledge of the exact particle location has several advantages. These advantages include correction of systematic particle measurement errors due to variability of the particle position within the sample volume, targeting of particles based on position, capture of particles based on position, reduced system energy consumption and reduced system complexity.
摘要:
Particle detection systems without knowledge of a location and velocity of a particle passing through a volume of space, are less efficient than if knowledge of the particle location is known. An embodiment of a particle position detection system capable of determining an exact location of a particle in a fluid stream is discussed. The detection system may employ a patterned illuminating beam, such that once a particle passes through the various portions of the patterned illuminating beam, a light scattering is produced. The light scattering defines a temporal profile that contains measurement information indicative of an exact particle location. However, knowledge of the exact particle location has several advantages. These advantages include correction of systematic particle measurement errors due to variability of the particle position within the sample volume, targeting of particles based on position, capture of particles based on position, reduced system energy consumption and reduced system complexity.
摘要:
Aerosol and hydrosol particle detection systems without knowledge of a location and velocity of a particle passing through a volume of space, are less efficient than if knowledge of the particle location is known. An embodiment of a particle position detection system capable of determining an exact location of a particle in a fluid stream is discussed. The detection system may employ a patterned illuminating beam, such that once a particle passes through the patterned illuminating beam, a light scattering is produced. The light scattering defines a temporal profile that contains measurement information indicative of an exact particle location. However, knowledge of the exact particle location has several advantages. These advantages include correction of systematic particle measurement errors due to variability of the particle position within the sample volume, targeting of particles based on position, capture of particles based on position, reduced system energy consumption and reduced system complexity.